DEFENSE INFORMATION SYSTEMS AGENCY JOINT INTEROPERABILITY TEST COMMAND 2001 BRAINARD ROAD FORT HUACHUCA, ARIZONA 85613-7051 Networks, Transmission and Integration Division (JTE) 14 Nov 03 ### MEMORANDUM FOR DISTRIBUTION SUBJECT: MIL-STD-188-183 Conformance Certification of the AN/PSC-5C Shadowfire Manpack Radio (Certification 351.258) References: (a) DOD Directive 4630.5, "Interoperability and Supportability of Information Technology (IT) and National Security Systems (NSS)," 11 Jan 2002 (b) CJCSI 6212.01B, "Interoperability and Supportability of National Security Systems, and Information Technology Systems," 8 May 2000 - 1. References (a) and (b) establish the Defense Information Systems Agency (DISA), Joint Interoperability Test Command (JITC), as the responsible organization for interoperability test certification. Additional references are provided in enclosure 1. - 2. Military standard (MIL-STD)-188-183 conformance testing has been completed for the AN/PSC-5C Shadowfire Manpack Radio. The terminal is certified as meeting the applicable requirements of MIL-STD-188-183 (reference (c)) to the extent detailed in the Conformance Certification Testing Summary (enclosure 2). The tested terminal components and associated software versions were: | AN/PSC-5C Shadowfire | RT-1672C(C)/U | |---|---------------| | Control Processor Software (CP-SW) | CTRL 02.78 | | Control Processor Hardware (CP-VHDL) | CPHW 02.10 | | Modem Orderwire Encryption Board (Modem OEB) | MOEB 02.00 | | Modem Digital Signal Processor (Modem DSP) | MDSP 05.19 | | Modem | Version 14.00 | | Shadowfire Baseband Processor Software (BP-SFIRE) | BPSW 08.13 | | SINCGARS Baseband Processor Software (BP-SGARS) | BPSW 08.13 | | Baseband Processor Hardware (BP-VHDL) | BPHW 02.40 | | Baseband Processor Hardware (BP-HW) | *BPHW xx.xx | | Fill Processor Software (FP-SW) | FPSW 05.05 | | Fill Processor Hardware (FP-VHDL) | FPHW 02.40 | JITC Memo, Networks, Transmission and Integration Division (JTE), MIL-STD-188-183 Conformance Certification of the AN/PSC-5C Shadowfire Manpack Radio (Certification 351.258) | ANDVT Processor Software (AP-SW) | APSW 08.19 | |------------------------------------|-------------| | ANDVT Processor Hardware (AP-VHDL) | | | ANDVT Processor Hardware (AP-HW) | *APHW xx.xx | | TCP/IP Processor Software (TP-SW) | TPSW 06.07 | - * Raytheon hardware manufacturing uses these version numbers to track revisions on manufacturing parts lists. These version numbers will vary in fielded radios and have no effect on the installed software. - 3. Testing was conducted at JITC Ultra High Frequency (UHF) Satellite Communications (SATCOM) test facility using the JITC procedures, contained in "MIL-STD-188-183/MIL-STD-188-183A Conformance Test Procedure," 09 January 2002. A summary of the test results is provided in enclosure 2. - 4. In accordance with reference (d), users are required to have terminals certified compliant to MIL-STD-188-181, -182, and -183. Engineering Change Proposal (ECP) 32 is a hardware and software modification to the AN/PSC-5 Spitfire Manpack Radio designed to provide a field upgrade resulting in the AN/PSC-5C Shadowfire Manpack Radio. ECP 32 uses a module replacement that provides additional data rates for MIL-STD-188-181B and Mixed Excitation Linear Prediction techniques. In addition, the upgrade includes improved narrowband voice vocoder, embedded Automatic Data Controller, embedded Internet Protocol layer, and numerous other enhancements. The additional enhancements include HAVE QUICK and SINCGARS frequency hopping, the addition of higher data rates in Line-of-Sight mode, and operator menu enhancements. Sufficient testing was performed to ensure that the Shadowfire was in compliance to MIL-STD-188-183. This certification memorandum declares that the MIL-STD-188-183 portion of the overall Joint Chiefs of Staff mandated requirement has been met for the AN/PSC-5C Shadowfire Manpack Radio. - 5. Previous testing has demonstrated that even though a product conforms to standards, there is still a potential for incompatibility between UHF terminals that implement technical requirements differently. Therefore, prior to an initial operational capability assessment, terminal users must define the specific terminal operational requirements. Additionally, the terminals must be tested and certified for interoperability by JITC in accordance with reference (b). JITC Memo, Networks, Transmission and Integration Division (JTE), MIL-STD-188-183 Conformance Certification of the AN/PSC-5C Shadowfire Manpack Radio (Certification 351.258) reached directly at http://jitc.fhu.disa.mil/reg/dama1.html. The UHF SATCOM DAMA Test Facility homepage can be reached directly at http://jitc.fhu.disa.mil/reg/uhfdama.htm. 7. The testing agent point of contact is Norma Vega, DSN 879-1741, Commercial (520) 538-1741, e-mail <u>vegan@fhu.disa.mil</u>. Sincerely, 2 Enclosures: 1 Additional References 2 Conformance Certification Testing Summary LESLIE F. CLAUDIO Chief Networks, Transmission and Integration Division Eshe T. Clander #### Distribution: Joint Chiefs of Staff, Director for Command, Control, Communications and Computer Systems (J6), Room 1E833, The Pentagon, Washington, DC 20318-6000 Joint Chiefs of Staff (J6S), ATTN: CDR Brooks, Room IC832, The Pentagon, Washington, DC 20318-6000 Office of the Secretary of Defense, Director Operational Test and Evaluation, Room 3E318, The Pentagon, Washington, DC 20301-1700 Assistant Secretary of Defense (Command, Control, Communications, and Intelligence), ATTN: C3I, The Pentagon, Washington, DC 20301-8000 Defense Information Systems Agency (IN42), ATTN: Andy Pappas, 5600 Columbia Pike, Falls Church, VA 22041-2717 Program Manager's Office, Tactical Radio Communications Systems, Building 456, Fort Monmouth, NJ 07703-5000 ## ADDITIONAL REFERENCES - (c) MIL-STD-188-183, "Interoperability Standard for 25-kHz UHF TDMA/DAMA Terminal Waveform," 2 December 1996 - (d) Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 6251.01A, "Ultrahigh Frequency (UHF) Satellite Communications Demand Assigned Multiple Access Requirements," 21 April 2003 (This page intentionally left blank.) # CONFORMANCE CERTIFICATION TESTING SUMMARY (Certification 351.258) - **1. CERTIFICATION TITLE.** MIL-STD-188-183 Conformance Certification of the AN/PSC-5C Shadowfire Manpack Radio. - 2. PROPONENT. Tactical Radio Communications Systems Building 456 Fort Monmouth, NJ 07703-5000 - 3. PROGRAM MANAGER/USER POC. Mr. Paul Hancik, (732) 532-7300 E-mail: paul.hancik@c3smail.monmouth.army.mil - **4. TESTERS.** JITC Mr. Larry Metz, (520) 538-5215 Mr. Raymond Hopkins, (520) 538-4275 Ms. Norma Vega, (520) 538-1741 - **5. SYSTEM DESCRIPTION.** The AN/PSC-5C Shadowfire Manpack Terminal is an Ultra High Frequency (UHF) Satellite Communications (SATCOM) terminal capable of both dedicated and Demand Assigned Multiple Access (DAMA) modes of operation. The terminal provides internal Transmission Security (TRANSEC) for orderwire encryption in the DAMA mode, and embedded Communications Security (COMSEC) for user communications encryption in all modes. Engineering Change Proposal (ECP) 32 is a hardware and software modification to the AN/PSC-5 Spitfire Manpack Radio designed to provide a field upgrade resulting in the AN/PSC-5C Shadowfire Manpack Radio. ECP 32 uses a module replacement that provides additional data rates for MIL-STD-188-181B and Mixed Excitation Linear Prediction (MELP) techniques. In addition, the upgrade includes improved narrowband voice vocoder, embedded Automatic Data Controlle, embedded Internet Protocol layer, and numerous other enhancements. The additional enhancements include HAVE QUICK and SINCGARS frequency hopping, the addition of higher data rates in Line-of-Sight mode, and operator menu enhancements. - **6. TEST NETWORK DESCRIPTION.** The test networks varied for each MIL-STD requirement being verified. Testers used various configurations with a Navy 25-kHz DAMA Semi-Automatic Controller (SAC), DAMA Orderwire Processor (DOP), and commercial-off-the-shelf test equipment to verify each MIL-STD requirement. Detailed test configurations and data collection information are in the appropriate sections of the JITC test procedure, "MIL-STD-188-183/MIL-STD-188-183A Conformance Test Procedure," 9 January 2002. Figure 1 shows the system configuration of the tested terminal. Figure 1. Tested System Configuration 7. SYSTEM CONFIGURATION. Terminal components and software versions include: | AN/PSC-5C Shadowfire | RT-1672C(C)/U | |---|---------------| | Control Processor Software (CP-SW) | CTRL 02.78 | | Control Processor Hardware (CP-VHDL) | CPHW 02.10 | | Modem Orderwire Encryption Board (Modem OEB) | MOEB 02.00 | | Modem Digital Signal Processor (Modem DSP) | MDSP 05.19 | | Modem | Version 14.00 | | Shadowfire Baseband Processor Software (BP-SFIRE) | BPSW 08.13 | | SINCGARS Baseband Processor Software (BP-SGARS) | BPSW 08.13 | | Baseband Processor Hardware (BP-VHDL) BPHW 02.40 | | | Baseband Processor Hardware (BP-HW) | *BPHW xx.xx | | Fill Processor Software (FP-SW) | FPSW 05.05 | | Fill Processor Hardware (FP-VHDL) | FPHW 02.40 | | ANDVT Processor Software (AP-SW) | APSW 08.19 | | ANDVT Processor Hardware (AP-VHDL) | APHW 06.90 | | ANDVT Processor Hardware (AP-HW) | *APHW xx.xx | | TCP/IP Processor Software (TP-SW) | TPSW 06.07 | | | | ^{* -} Raytheon hardware manufacturing uses these version numbers to track revisions on manufacturing parts lists. These version numbers will vary in fielded radios and have no effect on the installed software. - **8. MODES OF OPERATION.** All MIL-STD-188-183 mandatory and implemented optional modes of operation and capabilities have been verified. Optional capabilities implemented in this terminal include
Data Transfer, Type B Conference Requests, Type B Guard List Reports, and the terminal implements both Method One and Method Two Dedicated Ranging. Optional MELP techniques for secure voice communications are implemented in this terminal. - **9. TESTING LIMITATIONS.** Details of the specific requirements that could not be verified are listed below. - **a.** Requirement 14, paragraph 5.1.2(5), "The first symbol following the Legendre Polynomial (LPN) shall be the first data symbol." - (1) Not Tested. Fill bits always follow the LPN. It was not possible to determine and compare the first data symbol. - (2) Impact. None. No adverse operational impact is anticipated. - **b.** Requirement 45, paragraph 5.1.4.1.1.b(3), "The accuracy of all ranges shall be 1 time chip or better." - (1) Not Tested. The terminal has no provision for directly measuring internal accuracy of the range delay measurement. However, the RF burst timing as received at the satellite met all other MIL-STD burst timing requirements. These other burst-timing requirements are dependent upon the range delay measurement. Therefore, the range delay accuracy was indirectly verified. - (2) Impact. None. No adverse operational impact is anticipated. - **c.** Requirement 625, paragraph 5.3.2(3), "Hardware implementation of the terminal shall include provisions for future implementation of Over-the-Air Rekeying (OTAR) for the orderwire." - (1) Not Tested. Testing could not be performed because OTAR of the TRANSEC Key for CCOW messages has not been implemented in the Channel Controller. - **(2) Impact.** None. Since the Channel Controller will not support OTAR of the TRANSEC Key for CCOW messages, OTAR is not being used in this mode of operations. - **10. REQUIRED STANDARDS AND CONFORMANCE.** The required standard is MIL-STD-188-183, "Interoperability Standard for 25-kHz UHF TDMA/DAMA Terminal Waveform," 2 December 1996. Table 1 delineates all the MIL-STD requirements and indicates the status as "Met," "Not Met," "Not Tested," or "Not Applicable." The AN/PSC-5C Shadowfire Manpack Terminal meets the mandatory requirements set forth in MIL-STD-188-183. The following provides details and impacts to some of the noted requirements. Requirement 2 (for Distributed Control (DC) Channel Control Orderwires (CCOWs), #1, #2, and #3) paragraph 4.3, and requirements 550 through 579 paragraphs 5.2.2.4.7.5.a(1) through 5.2.2.4.7.7f(2), all apply to DC mode frequency switching. - (1) Not Applicable. As directed by the Joint Chiefs of Staff in a memorandum with subject: "Requirement for Demand Assigned Multiple Access (DAMA) DC Mode Frequency Switching Capability," 4 February 1997, MIL-STD-188-183 requirements for DC mode frequency switching are no longer required and have been removed from MIL-STD-188-183A. - **(2) Impact.** None. No impact is anticipated since the requirement has been removed from MIL-STD-188-183A. - 11. TEST AND ANALYSIS REPORT. JITC distributes test documentation via the JITC Electronic Report Distribution system which uses unclassified (NIPRNET) e-mail. More comprehensive information is available via the JITC System Tracking Program (STP). The STP is accessible by .mil/.gov users on the NIPRNET at https://stp.fhu.disa.mil. Test reports, lessons learned, and related testing documents and references are on the JITC Joint Interoperability Tool (JIT) at http://jit.fhu.disa.mil (NIPRNET) or http://jit.stp.208.204.125 (SIPRNET). JITC also provides a DAMA Certification Register on the JITC public website under "Product Registers." The DAMA Certification Register can be reached directly at http://jitc.stp.disa.mil/reg/dama1.html. The UHF SATCOM DAMA Test Facility homepage can be reached directly at http://jitc.stp.disa.mil/reg/uhfdama.htm. The testing agent point of contact is Norma Vega, DSN 879-1741, Commercial (520) 538-1741, e-mail vegan@fhu.disa.mil. Table 1. MIL-STD-188-183 Requirements Matrix for the AN/PSC-5C Shadowfire Manpack Terminal | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---|---|--------------------------| | 1 | 4.2.3 | Terminal shall achieve CCOW acquisition for network entrance and synchronization data. | Met | | 2 | 4.3 | The terminal shall be able to receive and process CCOW commands IAW tables IA and IB [of the MIL-STD] and generate RCCOW requests/responses IAW tables IIA and IIB [of the MIL-STD]. | Met (Note) | | Note: As o | lirected by the JCS, requireswitching and are no longer | ement 2 (for DC CCOWs, #1, #2, and #3), and requirements 550 through 579 are applicable | to DC mode | | 3 | 4.4(1) | The terminal transmit power received at satellite shall be at least -163 decibels relative to 1 watt (dBW). | Not Testable
(Note) | | Note: Gen | eral statement/definition. | | | | 4 | 4.4(2) | The terminal receiver system shall be designed to provide error-free reception of CCOW burst for at least 999 of 1000 CCOW bursts, with a confidence of 98 percent. | Met | | 5 | 4.4(3) | It shall be assumed that the controller power at the satellite is at least - 163 dBW, and error free reception implies successful acquisition of the burst. | Not Applicable
(Note) | | Note: This | is a Channel Controller re | equirement and, therefore, is not applicable to the terminal. | | | 6 | 4.4(4) | The terminal specifications shall define parameters that must be met to comply with requirements of this paragraph. | Not Testable
(Note) | | Note: Gen | eral statement/definition. | Not testable. | | | 7 | 5.1.1b(1) | The terminal shall transmit only in a time slot that is part of the current frame format. | Met | | 8 | 5.1.1b(2) | Format configuration and restrictions shall be as described in 5.1.1.1 and 5.1.1.2. | Not Testable
(Note) | | | eral statement/definition. | | | | 9 | 5.1.1b(3) | The terminal shall be able to operate within this frame format structure. | Met | | 10 | 5.1.2(1) | Each RF transmission shall begin with a synchronization preamble. | Met | | 11 | 5.1.2(2) | The preamble structure, as it relates to the burst rates and slot types, shall be in accordance with figure 6 [of the MIL-STD]. | Met | | 12 | 5.1.2(3) | The latter portion of the synchronization preamble shall be a Legendre polynomial (LPN) whose length is defined in figure 6 [of the MIL-STD] and whose content is specified in table III [of the MIL-STD]. | Met | | 13 | 5.1.2(4) | The terminal's specification for bit error ratio (BER) and acquisition performance under degraded link conditions shall be used to determine how many LPN bits must be correctly received for a burst to be considered acquired. | Met | | 14 | 5.1.2(5) | The first symbol following the LPN shall be the first data symbol. | Not Tested
(Note) | | Note: Fill b | oits always follow the LPN | It was not possible to determine and compare the first data symbol. | | | 15 | 5.1.3c(1) | All RF transmissions shall occur within the allocated times of the slots specified in 5.1.3.1 through 5.1.3.5. | Met | | 16 | 5.1.3c(2) | The terminal's switching time shall not exceed 875 microseconds. | Met | | 17 | 5.1.3c(3) | Terminals shall inhibit transmission for at least 500 microseconds of the leading zeros (ones for the QPSK I channel) in figure 6 [of the MIL-STD] preamble structures. | Met | | 18 | 5.1.3d(1) | Duration of specified burst transmission shall be a function of slot type, baseband rate, burst rate, FEC coding (see 5.4.1), and fill bits required due to interleaving (see 5.4.3). | Not Testable
(Note) | | Note: Gen | eral statement/definition. | Not testable. | | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---|---|------------------------| | 19 | 5.1.3d(2) | Burst timing requirements and the component parts of all bursts for all defined slots shall be as specified in table IV [of the MIL-STD]. | Met | | 20 | 5.1.3.e | The terminal's frame time delay for each baseband data rate shall not exceed the maximum corresponding values for each rate shown in table 4-1 of FSCS-212-16D. | Met | | 21 | 5.1.3.2(1) | RCCOW slot timing shall be as specified in table V [of the MIL-STD]. | Met | | 22 | 5.1.3.2(2) | RCCOW reception shall start at time chip 18253 for format number 1 (time chip 5837 for format number 2). | Met | | 23 | 5.1.3.2(3) | Requirements for content and use of RCCOW shall be as specified in 5.2.2.2 for AC mode and 5.2.2.5 for DC mode. | Met | | 24 | 5.1.3.2(4) | Requirements for RCCOW transmit decision shall be as specified in 5.2.2.3 for AC mode and 5.2.2.6 for DC mode. | Met | | 25 | 5.1.3.3(1) | The user terminal shall use a range processing method discussed in 5.1.4 (active or passive ranging). | Met | | 26 | 5.1.3.3(2) | Burst transmissions (other than ranging) shall be inhibited by the terminal when it has been determined by any ranging method that the range uncertainty exceeds 0.875 ms. | Met | | 27 | 5.1.3.3a(1) | The range time slot is a shared slot and
shall be used only to measure range to the satellite. | Met | | 28 | 5.1.3.3a(2) | If the average relative velocity between the satellite and the user terminal during a ranging interval is greater than 180 nautical miles per hour, other methods of updating bursts transmission time shall be used, including, but not limited to, the methods listed in this paragraph. | Met | | 29 | 5.1.3.3b(1) | The requirement for terminals to maintain accurate timing shall be mandatory. | Not Testable
(Note) | | Note: Ger | neral statement/definition. | Not testable. | | | 30 | 5.1.3.3b(2) | Range and link-test time slots shall not be used by terminals for ranging except in accordance with the requirements specified in 5.1.4.1. | Met | | 31a | 5.1.3.3b(3) | Range slot timing shall be as specified in table V [of the MIL-STD]. | Met | | 31b | Footnote on Page
37 [of the MIL-
STD] | If range ≤ 241.87 ms, the guard time at the start of the slot shall be reduced by 62 time chips to prevent overlapping a CCOW reception with a ranging transmission. | Met | | 32 | 5.1.3.4(1) | Link-test-slot timing shall be as specified in table V [of the MIL-STD]. | Met | | 33 | 5.1.3.4(2) | The link-test time slot shall be 1293 time chips (67.344 ms) in duration with a variable-length guard time allocated at the end of the slot. | Met | | 34 | 5.1.3.4(3) | The link test reception shall start at time chip 4544. | Met | | 35 | 5.1.3.4(4) | Only one terminal at a time shall perform a link test. | Met | | 36 | 5.1.3.4(5) | Requirements for using the link test slot in support of the ranging function shall be as specified in 5.1.4.1. | Met | | 37 | 5.1.3.5(1) | User-segment-slot timing shall be as specified in tables VI through X [of the MIL-STD]. | Met | | 38 | 5.1.3.5(2) | All RF transmissions shall occur to allow reception within the allocated time slots specified in these tables [of the MIL-STD]. | Met | | 39 | 5.1.4 | If terminals use range and link-test time slots to perform active ranging, the algorithms specified in 5.1.4.1 and its subparagraphs shall be used. | Met | | 40 | 5.1.4.1.1a(1) | After achieving CCOW acquisition, the terminal shall select the first available odd numbered frame to perform a range measurement in the range time slot. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|--|---|--------------------------| | 41 | 5.1.4.1.1a(2) | If the first random range measurement is unsuccessful, the terminal shall generate a random number (y) between 1 and 128, wait 2y frames, and perform a range measurement using the range time slot to be received in the odd-numbered frame that is 2y frames following the unsuccessful measurement. | Met | | 42a | 5.1.4.1.1a(3) | If this range measurement is unsuccessful, the user terminal shall wait 256 - 2y frames before generating another random number (y) | Met | | 42b | 5.1.4.1.1a(4) | and shall repeat the process. | Met | | 43 | 5.1.4.1.1b(1) | The range estimate used to set uplink timing for a ranging transmission shall be dithered, in 1-time chip increments, between 251.35 and 257.97 ms when in the random range mode or when range has not been determined. | Met | | 44 | 5.1.4.1.1b(2) | As long as range remains determined, the terminal's next ranging transmission shall be positioned so as to attempt to fall exactly in the center of its time slot. | Met | | 45 | 5.1.4.1.1b(3) | The accuracy of all ranges shall be 1 time chip or better. | Not Tested
(Note) | | Note: A te | rminal has no provision | or measuring the internal accuracy of the range delay measurement. | I | | 46 | 5.1.4.1.2 | Two methods of dedicated ranging shall be employed, depending on the terminal's ranging epoch internal requirements. | Not Testable
(Note) | | Note: Ger | neral statement/definition | | T | | 47 | 5.1.4.1.2.1(1) | Terminals that do not require range updates within 1024 frames shall not transmit during even numbered range slots. | Met | | 48 | 5.1.4.1.2.1(2) | Upon successful completion of ranging in the random access mode, the terminal shall continuously monitor link test slots in even numbered frames. | Met | | 49 | 5.1.4.1.2.1a(1) | The terminal shall maintain and update a ranging activity database for 1024 frame times by identifying and flagging those frames with activity in the ELT slot. | Met | | 50 | 5.1.4.1.2.1a(2) | The terminal shall then generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. | Met | | 51 | 5.1.4.1.2.1a(3) | The terminal shall perform a dedicated range measurement in that unused ELT slot and, when successful, every 1024 frames thereafter. | Met | | 52 | 5.1.4.1.2.1b(1) | If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. | | | 53 | 5.1.4.1.2.1b(2) | The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. | Not Applicable
(Note) | | 54 | 5.1.4.1.2.1b(3) | The terminal shall perform a dedicated range measurement in that unused ELT slot and, when successful, every 1024 frames thereafter. | | | 55 | 5.1.4.1.2.1b(4) | This process shall be repeated by the terminal as necessary. | | | | ional Requirements. The ent is unsuccessful. | e terminal reverts to the random ranging algorithm to perform a range measurement when a de | edicated range | | 56 | 5.1.4.1.2.2a(1) | Upon successful completion of ranging in the random access mode, the terminal shall continuously monitor link test slots in the even numbered frames. | Met | | 57 | 5.1.4.1.2.2a(2) | The terminal shall maintain and update a ranging activity database of 1024 frame times by identifying and flagging those frames with activity in the ELT slot. | Met | | flags set during the preceding 1024 frames. The terminal shall then determine if this frame number equals 256N + 2, where N is any positive integer. If true, this frame number shall be excluded by the terminal as a potential dedicated ranging frame, since the range slot in a frame with this number is reserved for the channel controller. In such a case, the frame for the next unused ELT slot shall be identified. The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated rangeasurement is unsuccessful. Baseband data from any of the I/O ports shall be selectable through orderwire commands. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. Baseband data bit number one shall be the first data bit sent into the encoder. | Met Met Met Met | | | |
--|--------------------------|--|--|--| | 58 5.1.4.1.2.2b(1) 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. The terminal shall then determine if this frame number equals 256N + 2, where N is any positive integer. If true, this frame number shall be excluded by the terminal as a potential dedicated ranging frame, since the range slot in a frame with this number is reserved for the channel controller. In such a case, the frame for the next unused ELT slot shall be identified. The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 | Met
Met
Met | | | | | flags set during the preceding 1024 frames. The terminal shall then determine if this frame number equals 256N + 2, where N is any positive integer. If true, this frame number shall be excluded by the terminal as a potential dedicated ranging frame, since the range slot in a frame with this number is reserved for the channel controller. In such a case, the frame for the next unused ELT slot shall be identified. The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated rangeasurement is unsuccessful. Baseband data from any of the I/O ports shall be selectable through orderwire commands. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. Baseband data bit number one shall be the first data bit sent into the encoder. | Met
Met | | | | | 59 5.1.4.1.2.2b(2) The terminal shall then determine if this frame number equals 256N + 2, where N is any positive integer. 60 5.1.4.1.2.2b(3) If true, this frame number shall be excluded by the terminal as a potential dedicated ranging frame, since the range slot in a frame with this number is reserved for the channel controller. 61 5.1.4.1.2.2b(4) In such a case, the frame for the next unused ELT slot shall be identified. 62 5.1.4.1.2.2b(5) The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. 63 5.1.4.1.2.2c(1) Enterminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. 64 5.1.4.1.2.2c(2) If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. 65 5.1.4.1.2.2c(3) The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated ranging in the terminal only has one I/O port. 68 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. 69 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 60 Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met
Met | | | | | Standard Composed of thirteen Not April 1985 Standard Composed of thirteen Not April 20, which ever to the range and the preceding 1024 frames. Standard Composed of the Composed of the Composed of thirteen 8-bit bytes. Standard composed of thir | Met
Met | | | | | 5.1.4.1.2.2b(3) potential dedicated ranging frame, since the range slot in a frame with this number is reserved for the channel controller. 61 | Met | | | | | this number is reserved for the channel controller. 61 5.1.4.1.2.2b(4) In such a case, the frame for the next unused ELT slot shall be identified. 62 5.1.4.1.2.2b(5) The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. 63 5.1.4.1.2.2c(1) Et etminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. 64 5.1.4.1.2.2c(2) If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. 75 5.1.4.1.2.2c(3) The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated rangeasurement is unsuccessful. 87 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. 88 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 89 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met | | | | | In such a case, the frame for the next unused ELT slot shall be identified. The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. Not Al (Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement when a dedicated range of the recommends. See the stablished ELT slot, based on flags set during the preceding 1024 frames. Not Al (Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range of the random range of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. | | | | | | identified.
The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement when a dedicated range orderwire commands. Note: The terminal only has one I/O port. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | The terminal shall attempt to range in the identified unused ELT slot (called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range and the received from the baseband equipment. Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. To 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met | | | | | Called frame R), or in the even numbered frame range slot in frame R - 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of the process of the process of the process of the random ranging algorithm to perform a range measurement when a dedicated ranging in the process of | Met | | | | | 512, whichever comes first. The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated ra measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | MCL | | | | | The terminal shall then perform dedicated ranging by alternating between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 8 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | between the ELT slot and the even numbered frame ranging slot each 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 8 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 8 Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | 512 frame periods. If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated rameasurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met | | | | | If the terminal instead continues to perform dedicated ranging, it shall use the established ELT activity database to help identify the next unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated rameasurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be
the first data bit sent into the encoder. I Baseband data bit number one shall be composed of thirteen 8-bit bytes. | | | | | | unused ELT slot. The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | The terminal again shall generate a random number (X) between 1 and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. 5.2.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | 65 5.1.4.1.2.2c(3) and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated ra measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | nnlicable | | | | | s.1.4.1.2.2c(3) and 64, wait 2X frames, and identify the next unused ELT slot, based on flags set during the preceding 1024 frames. 66 5.1.4.1.2.2c(4) The process described above shall then be repeated as required. Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 5.2.1(1) Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Note) | | | | | Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. | 1010) | | | | | Note: Optional Requirements. The terminal reverts to the random ranging algorithm to perform a range measurement when a dedicated range measurement is unsuccessful. 67 | | | | | | Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. | | | | | | Baseband data from any of the I/O ports shall be selectable through orderwire commands. Note: The terminal only has one I/O port. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. 5.2.1(3) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | inge | | | | | Note: The terminal only has one I/O port. Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. 5.2.1(1) Baseband data bit number one shall be the first data bit sent into the encoder. Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | pplicable | | | | | Note: The terminal only has one I/O port. 68 5.2.1(2) Baseband data shall be presented to the FEC encoder in the order it is received from the baseband equipment. 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Note) | | | | | received from the baseband equipment. Baseband data bit number one shall be the first data bit sent into the encoder. 5.2.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | 69 5.2.1(3) Baseband data bit number one shall be the first data bit sent into the encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met | | | | | 69 5.2.1(3) encoder. 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | | | | | | 70 5.2.1.1(1) Each of the orderwires (CCOW and RCCOW) shall be composed of thirteen 8-bit bytes. | Met | | | | | thirteen 8-bit bytes. | | | | | | thirteen 8-bit bytes. | Met | | | | | | | | | | | The ordering of these bits and the operation of the cyclic redundancy | Met | | | | | check (CRC) shall be as described in 5.2.1.2 through 5.2.1.5. | Mot | | | | | | Met | | | | | The thirteen 8-bit bytes of the orderwire shall be presented to the encoder in the following order: LSB of byte 1 through MSB of byte 1, | | | | | | 73 5.2.1.2 Encoder in the following order. ESB of byte 1 through MSB of byte 1, LSB of byte 2 through MSB of byte 2, LSB of byte 13 through MSB of | Met | | | | | byte 13. | | | | | | In addition to convolutional encoding and interleaving orderwires shall | | | | | | 74 5.2.1.3(1) undergo 2-byte CRCs on their 13 bytes. | | | | | | | Met | | | | | The parity of a received orderwire command shall be recalculated and | Met
Met | | | | | 76 5.2.1.3(3) The party of a received orderwise command shall be recalculated and compared to the received parity. | Met | | | | | | | | | | | | Met | | | | | | Met
Met | | | | | l l | Met
Met
Met | | | | | Note: General statements/definitions. Not testable. | Met
Met
Met
Met | | | | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------------|--|------------------------| | 79 | 5.2.1.3(6) | The result shall be divided by $P(X)$ to form both the quotient $Q(X)$ and the remainder $R(X)$. | Not Testable | | 80 | 5.2.1.3(7) | This CRC method shall be the IBM Binary Synchronous Communications (BSC) CRC-16 Protocol. | (Note) | | | eral statements/definition | | | | 81 | 5.2.1.3(8) | The CRC shall be calculated using thirteen 8-bit bytes. | Met | | 82 | 5.2.1.3(9) | The locations that the CRC will occupy in CCOW and RCCOW messages shall be set to zeros during the CRC calculation. | Not Testable
(Note) | | Note: Gen | eral statement/definition. | Not testable. | | | 83 | 5.2.1.3(10) | Then the zeros shall be replaced by the calculated CRC before the message is transmitted. | Met | | 84 | 5.2.2 | Field definitions of the CCOW and RCCOW bursts for both AC and DC operating modes shall be as indicated in appendixes A and B, respectively. | Met | | 85 | 5.2.2.1 | The terminal shall comply with CCOW command no later than the next frame after receiving the CCOW. | Met | | 86a | 5.2.2.1.1(1) | All terminal units shall record in what frame they transmitted an RCCOW | Met | | 86b | 5.2.2.1.1(2) | and, exactly three frames later, shall decode the CALL ACK field to find out what type of CALL ACK they have received. | Met | | 87 | 5.2.2.1.1(3) | If the terminal does not receive a CALL ACK, it shall proceed in accordance with paragraph 5.2.2.3.3. | Met | | 88 | 5.2.2.1.2 | The terminal interpretation of these codes shall be as follows: | Met | | 89 | 5.2.2.1.2a | The terminal unit shall not transmit an RCCOW that is below the RCCOW precedence. | Met | | 90 | 5.2.2.1.2b | Specifies that the terminal unit whose user number matches the number given by the CCOW shall transmit a conference list RCCOW in the next frame. | Met | | 91 | 5.2.2.1.2c | Specifies that one particular terminal unit identified in the CCOW by its user number has been dedicated to the RCCOW slot in the next frame. | Met | | 92 | 5.2.2.1.2e | Specifies that the terminal unit identified by its user number shall transmit
a Status Report A: Group 1 RCCOW in the next frame. | Met | | 93 | 5.2.2.1.2f | Specifies that the terminal unit identified by its user number shall transmit a Status Report A: Group 2 RCCOW in the next frame. | Met | | 94 | 5.2.2.1.2g | Specifies that the terminal unit identified by its user number shall transmit a Status Report B: Group 1 RCCOW in the next frame. | Met | | 95 | 5.2.2.1.2h | Specifies that the terminal unit identified by its user number shall transmit a Status Report B: Group 2 RCCOW in the next frame. | Met | | 96 | 5.2.2.1.2i | Specifies that the terminal unit identified by its user number shall transmit a Link Test Results RCCOW in the next frame. | Met | | 97 | 5.2.2.1.2j | Specifies that the terminal unit identified by its user number shall report the first group of numbers in its guard lists in the next frame. | Met | | 98 | 5.2.2.1.2k | Specifies that the terminal unit identified by its user number shall report the second group of numbers in its guard lists in the next frame. | Met | | 99 | 5.2.2.1.21 | Specifies that the terminal unit identified by its user number shall report the third group of numbers in its guard lists in the next frame. | Met | | 100 | 5.2.2.1.2m | Specifies that the terminal unit identified by its user number shall report the fourth group of numbers in its guard lists in the next frame. | Met | | JITC | MIL-STD | DECUMPEMENT DECORPOSION | OTATUO | |------------|---------------------------|--|--------------------------| | REQ# | Paragraph | REQUIREMENT DESCRIPTION | STATUS | | 101 | 5.2.2.1.2n | Specifies that the terminal unit with five to eight ports guarding at least 14 numbers and identified by its user number shall report guard numbers not reported in Guard List Report: Groups 1-4 in the next frame. | Met | | 102 | 5.2.2.1.20 | Specifies that terminal units shall inhibit the transmission of any RCCOW in the next frame. | Met | | 103 | 5.2.2.1.3 | All terminals with 16-bit addresses shall assume the MSB (Bit 16) is a zero when receiving the Master Frame CCOW. | Met | | 104 | 5.2.2.1.7.1c(1) | If the frame format has not changed from the previous master frame, no terminal action shall be taken. | Met | | 105 | 5.2.2.1.7.1c(2) | If the frame format has changed, the terminal shall check its slot connects and disconnect any that existed in the changed segment(s) of the frame format. | Met | | 106 | 5.2.2.1.7.1h(1) | If the DC flag is reset, the terminal shall operate in the AC mode. | Met | | 107 | 5.2.2.1.7.1h(2) | If the DC flag is set, the terminal shall operate in the DC mode. | Met | | 108 | 5.2.2.1.7.2 | A terminal shall disconnect its I/O port(s) when it receives a slot disconnect order. | Met | | 109 | 5.2.2.1.7.2a | If the slot number is connected to the terminal I/O port, and if the slot connect frequency is the same as the frequency on which the terminal is receiving the CCOW, the terminal shall perform a slot disconnect. | Met | | 110a | 5.2.2.1.7.2b(1) | The terminal shall compare this (User #1 ID) ID number with the port numbers | Met | | 110b | 5.2.2.1.7.2b(2) | and shall also search the guarded list of each port for the number. | Met | | 111 | 5.2.2.1.7.2b(3) | If no match is found, no terminal action shall be taken. | Met | | 112 | 5.2.2.1.7.2b(4) | If a match is found, the terminal I/O port shall be disconnected. | Met | | 113 | 5.2.2.1.7.2c | This data field (User #2 ID) shall cause the same terminal action and results for the User #2 ID number as described for the User #1 ID number. | Met | | 114 | 5.2.2.1.7.2d | User #1 All Ports Flag - All ports of the terminal identified by User #1 shall be disconnected. | Met | | 115 | 5.2.2.1.7.2e | User #2 All Ports Flag - All ports of the terminal identified by User #2 shall be disconnected. | Met | | 116 | 5.2.2.1.7.2f | The presence of nonzero data in the TIME #1 field indicates that the terminal I/O port identified by the User #1 ID number shall perform a timed disconnect; in other words, the port shall disconnect when the identified amount of time has elapsed. | Met | | 117 | 5.2.2.1.7.2g | The TIME #2 field shall cause the same terminal action for the User #2 ID number, as described in subparagraph f for TIME #1. | Met | | 118 | 5.2.2.1.7.3(1) | A terminal shall connect its I/O port(s) when it receives a slot connect order. | Met | | 119 | 5.2.2.1.7.3(2) | The slot connect shall be as follows: | Met | | 120 | 5.2.2.1.7.3a | The port specified in c and d below shall be configured to operate at the bit rate corresponding to the code as shown below: BPS CODE BPS CODE 75 000 2400 100 300 001 4800 101 600 010 16000 110 1200 011 SPARE 111 | Not Applicable
(Note) | | Note: A te | rminal does not use the E | it Rate field to determine the actual data rate. The actual data rate is derived from the Slot No | umber field. | | 121 | 5.2.2.1.7.3b | Slot Number - These bits indicate the time slot to which the terminal I/O port shall be connected. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|-------------------------|--|-----------------------| | 122a | 5.2.2.1.7.3c(1) | The terminal shall compare the User #1 ID with its port numbers | Met | | 122b | 5.2.2.1.7.3c(2) | and shall also search the guard list of each port for the number. | Met | | 123 | 5.2.2.1.7.3c(3) | If a match is found, the I/O port that has been identified shall be connected. | Met | | 124a | 5.2.2.1.7.3d(1) | The terminal shall compare the User #2 ID with its port numbers | Met | | 124b | 5.2.2.1.7.3d(2) | and shall also search the guard list of each port for the number. | Met | | 125 | 5.2.2.1.7.3d(3) | If a match is found, the I/O port that has been identified shall be connected. | Met | | 126 | 5.2.2.1.7.3e | If the User #1 Receive-Only Flag is set, the User #1 ID number port shall be connected with a receive-only limitation. | Met | | 127 | 5.2.2.1.7.3.f | If the User #2 Receive-Only Flag is set, the User #2 ID number port shall be connected with a receive-only limitation. | Met | | 128 | 5.2.2.1.7.3g(1) | The presence of zero in the TIME field indicates that the I/O port identified by either user number shall have an unlimited slot assignment time. | Met | | 129 | 5.2.2.1.7.3g(2) | If the TIME field is nonzero, the I/O ports identified by the user numbers shall connect for the defined time period. | Met | | 130 | 5.2.2.1.7.3g(3) | The ports shall disconnect when this time has elapsed. | Met | | 131 | 5.2.2.1.7.3h(1) | When the Pre-set Channel Code is received and the IDs match, the I/O port shall be checked to determine if it is connected to a slot. | Met | | 132 | 5.2.2.1.7.3h(2) | If the port is already connected, but not to the same pre-set channel code as in the CCOW, then the connect shall be ignored. | Met | | 133 | 5.2.2.1.7.3h(3) | If the connect order is accepted, the connect pre-set channel code shall be stored in non-volatile memory. | Not Applicable (Note) | | Note: This | requirement was deleted | d by change notice one. | , , | | 134 | 5.2.2.1.7.3h(4) | appendix C table 30 IB [of the MIL-STD] contains frequency pair information which shall be used for the terminal's pre-set channel code database. | Met | | 135 | 5.2.2.1.7.4a(1) | Each terminal unit shall compare the User Number with its base address. | Met | | 136 | 5.2.2.1.7.4a(2) | If a match is found, the CCOW command shall be executed. | Met | | 137 | 5.2.2.1.7.4b | The T Flag, when set, indicates that an ongoing terminal link test shall be terminated. | Met | | 138 | 5.2.2.1.7.4c | The 9.6-kbps Flag A, when set, indicates that the terminal link test shall be performed at 9.6 kbps. | Met | | 139 | 5.2.2.1.7.4d | The 19.2 kbps Flag B, when set, indicates that the terminal link test shall be performed at 19.2 kbps. | Met | | 140 | 5.2.2.1.7.4e | The 32-kbps Flag C, when set, indicates that the terminal link test shall be performed at 32 kbps. | Met | | 141 | 5.2.2.1.7.4f(1) | The Dedicated Range Frame-Number field shall be 12 bits wide and shall represent the dedicated receive frame count for the terminal to range in. | Met | | 142 | 5.2.2.1.7.4f(2) | The Dedicated Range Frame-Number field shall have a value of zero when the command is a link test assignment. | Met | | 143 | 5.2.2.1.7.4f(3) | When the Dedicated Range Frame-Number field is received, the terminal shall store it as new status information. | Met | | 144 | 5.2.2.1.7.4f(4) | Every frame time the Dedicated Range Frame-Number shall be compared to the first 12 bits of the current frame count. | Met | | 145 | 5.2.2.1.7.4f(5) | If there is a match, the terminal shall perform a range measurement in the identified frame, unless the terminal configuration prohibits ranging. | Met | | JITC | MIL-STD | REQUIREMENT DESCRIPTION | STATUS | |------------|--------------------------|---|--------------------------| | REQ# | Paragraph | | 0174100 | | 146 | 5.2.2.1.7.5 | The terminal shall do no processing of the Channel Control Handover Request unless it has the functional capability to become a channel
controller. | Not Applicable
(Note) | | Note: This | terminal does not have o | optional channel control capabilities. | | | 147 | 5.2.2.1.7.6a(1) | A terminal shall compare the User #1 ID with its base address. | Met | | 148 | 5.2.2.1.7.6a(2) | If a match is found, the terminal shall change its frame format to that which is given in the Format #1 field in subparagraph d, below. | Met | | 149 | 5.2.2.1.7.6b(1) | A terminal shall compare the User #2 ID with its base address. | Met | | 150 | 5.2.2.1.7.6b(2) | If a match is found, the terminal shall change its frame format to that which is given in the Format #2 field in subparagraph e, below. | Met | | 151 | 5.2.2.1.7.6c(1) | When the All-User Flag is set, all terminals on the RF channel shall change their frame formats. | Met | | 152 | 5.2.2.1.7.6c(2) | The new format shall be Format #1. | Met | | 153 | 5.2.2.1.7.7a(1) | A terminal shall compare the User #1 ID field with its port numbers. | Met | | 154 | 5.2.2.1.7.7a(2) | If a match is found, the call request for the port shall be cancelled. | Met | | 155 | 5.2.2.1.7.7b(1) | A terminal shall compare the User #2 ID field with its port numbers. | Met | | 156 | 5.2.2.1.7.7b(2) | If a match is found, the call request for the port shall be cancelled. | Met | | 157 | 5.2.2.1.7.7c(1) | A terminal shall compare the User #3 ID field with its port numbers. | Met | | 158 | 5.2.2.1.7.7c(2) | If a match is found, the call request for the port shall be cancelled. | Met | | 159 | 5.2.2.1.7.8 | Channel assignment shall be performed in accordance with 5.2.2.1.7.8.1 and 5.2.2.1.7.8.2. | Met | | 160 | 5.2.2.1.7.8.1(1) | The effect of changing a terminal's frequency code is that the terminal shall transmit and receive orderwires on another RF channel. | Met | | 161 | 5.2.2.1.7.8.1(2) | If either the terminal ID matches or all terminals are directed to change their channel, the new frequency code shall replace the existing frequency code. | Met | | 162 | 5.2.2.1.7.8.1(3) | The terminal shall determine, based on the frequency field (subparagraph a) and appendix C [of the MIL-STD], if the assigned channel is 5- or 25-kHz. | Met | | 163 | 5.2.2.1.7.8.1(4) | If the channel is 5-kHz, the DAMA waveform shall be in accordance with MIL STD 188-182. | Met (Note) | | | | ing downlink and uplink synchronization on a 5-kHz DAMA channel, and establishing communitied during separate MIL-STD-188-182A testing. | nications. Compliance | | 164 | 5.2.2.1.7.8.1(5) | If the assigned channel is 25-kHz, the DAMA waveform shall be in accordance with 188-183. | Met | | 165 | 5.2.2.1.7.8.1(6) | If the terminal cannot achieve downlink and uplink acquisition within 90 seconds, the terminal shall return to the previous channel of operation. | Met | | 166 | 5.2.2.1.7.8.1(7) | If the terminal is switching from one 25-kHz DAMA channel to another, then the terminal shall retain all RCCOWs that are held in queue prior to the change. | Met | | 167a | 5.2.2.1.7.8.1(8) | If the terminal is switching from a 25-kHz DAMA channel to a 5-kHz DAMA channel, then the terminal shall clear (i.e., delete) all RCCOWs that are held in queue, | Met | | 167b | 5.2.2.1.7.8.1(9) | and shall send a ROW: LOGIN message on the new 5-kHz channel. | Met | | 168 | 5.2.2.1.7.8.1(10) | After a terminal is assigned to a new TDMA channel (5- or 25 kHz), it shall not return to the previous channel or change to any other channel unless directed by the channel controller. | Met | | 169 | 5.2.2.1.7.8.1a | The terminal shall use the Channel Frequency Code, based on appendix C, table 30 IA [of the MIL-STD], to determine the satellite channel on which to operate. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|---|--------| | 170 | 5.2.2.1.7.8.1b | The All-Change Flag, when set, indicates that all terminals on the channel shall change their frequency codes. | Met | | 171 | 5.2.2.1.7.8.1c | If the User #1 ID is the same as the terminal's base address, the terminal shall change its frequency code. | Met | | 172 | 5.2.2.1.7.8.1d | If the User #2 ID is the same as the terminal's base address, the terminal shall change its frequency code. | Met | | 173 | 5.2.2.1.7.8.1.e | If the User #3 ID is the same as the terminal's base address, the terminal shall change its frequency code. | Met | | 174 | 5.2.2.1.7.8.2(1) | Terminals shall comply with the configuration of the assigned channel. | Met | | 175 | 5.2.2.1.7.8.2(2) | They shall return to the channel of origin (the channel where they received the assignment) under either of the following conditions: After communications are completed, or after the timer expires. | Met | | 176 | 5.2.2.1.7.8.2(3) | If the terminal returns to the channel of origin for a reason other than expiration of the timer, it shall respond with an RCCOW Call Complete message after regaining transmit timing on the channel of origin. | Met | | 177 | 5.2.2.1.7.8.2a | The terminal shall use the Channel Frequency Code, based on appendix C, table 30-IA [of the MIL-STD], to determine the satellite channel on which to operate. | Met | | 178 | 5.2.2.1.7.8.2b | The All-Change Flag, when set, indicates that all terminal on the channel shall change their frequency codes. | Met | | 179 | 5.2.2.1.7.8.2c | If the User #1 ID field is the same as the terminal's base address, the terminal shall change its frequency code. | Met | | 180 | 5.2.2.1.7.8.2d | If the User #2 ID field is the same as the terminal's base address, the terminal shall change its frequency code. | Met | | 181 | 5.2.2.1.7.8.2e(1) | The 6-bit Time field shall be binary numbers 1 through 59. | Met | | 182 | 5.2.2.1.7.8.2e(2) | The presence of nonzero data in the Time field indicates that the terminals identified by User ID numbers shall perform a timed slot or channel disconnect; in other words, the terminals shall return to the channel of origin when the identified amount of time has elapsed. | Met | | 183 | 5.2.2.1.7.9a(1) | The terminal shall compare the User ID number with its port numbers. | Met | | 184 | 5.2.2.1.7.9a(2) | If a match is found, the terminal shall check the total number of guard numbers for all ports. | Met | | 185 | 5.2.2.1.7.9a(3) | If there is less than the maximum that can be guarded by a terminal, the guard numbers defined in b and c (below) shall be entered into the specific port guard list. | Met | | 186 | 5.2.2.1.7.9a(4) | Guard lists shall be entered in the order received, up to the maximum number that can be guarded. | Met | | 187 | 5.2.2.1.7.9b | As described in a (above), the Guard #1 shall be entered into the port guard list. | Met | | 188 | 5.2.2.1.7.9c | As described in a (above), the Guard #2 shall be entered into the port guard list. | Met | | 189 | 5.2.2.1.7.10a(1) | The terminal shall compare the User ID number with its port numbers. | Met | | 190 | 5.2.2.1.7.10a(2) | If a match is found, the terminal shall search the guard list for the guard numbers defined in b and c (below). | Met | | 191 | 5.2.2.1.7.10a(3) | If they are found, they shall be deleted from the guard list. | Met | | 192 | 5.2.2.1.7.10b | The Guard #1 field contains a guard number that the terminal shall delete from its guard list. | Met | | 193 | 5.2.2.1.7.10c | The Guard #2 field contains a guard number that the terminal shall delete from its guard list. | Met | | 194 | 5.2.2.1.7.11a(1) | The terminal shall compare the Called Party number with its port numbers and search the guard list of each port for the number. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|---|--------| | 195 | 5.2.2.1.7.11a(2) | For the first match found, the command shall be executed. | Met | | 196 | 5.2.2.1.7.12a(1) | The terminal shall compare the Calling Party #1 number with its port numbers. | Met | | 197 | 5.2.2.1.7.12a(2) | If a match is found, the terminal shall respond in accordance to the direction specified in the terminal system specification. | Met | | 198 | 5.2.2.1.7.12b(1) | The terminal shall compare the Calling Party #2 number with its port numbers. | Met | | 199 | 5.2.2.1.7.12b(2) | If a match is found, the terminal shall respond in accordance to the direction specified in the terminal system specification. | Met | | 200 | 5.2.2.1.7.13a(1) | The terminal shall compare the Called Party number with its port numbers. | Met | | 201 | 5.2.2.1.7.13a(2) | If a match is found, the terminal shall output the data with precedence, as specified in subparagraphs b and c, below. | Met | | 202 | 5.2.2.1.7.14a | The terminal shall compare the Called Party number with the user ID number assigned to each of its port numbers for a match. | Met | | 203 | 5.2.2.1.7.14.1(1) | After an information request has been received by a terminal, it shall send an information report before sending any other RCCOW. | Met | | 204 | 5.2.2.1.7.14.1(2) | No other RCCOW messages shall be sent before the information report. | Met | | 205 | 5.2.2.1.7.14.2(1) | The Constant Key Alarm Information Request message shall be used
by the terminal to automatically disconnect a port that has been illegally transmitting on a slot for greater than 17 minutes. | Met | | 206 | 5.2.2.1.7.14.2(2) | If there is a match between the terminal's port number and the user ID number in the Called Party field of the Information Request, and the code is 4, the terminal shall automatically disconnect its port from the slot. | Met | | 207 | 5.2.2.1.7.15 | When a terminal receives the Zeroize CCOW command, it shall zeroize the key storage memories of the KG and disconnect all slot connects. | Met | | 208 | 5.2.2.1.7.15a(1) | The terminal shall compare the Called Party #1 number with Called Party #2 and with its base user ID. | Met | | 209 | 5.2.2.1.7.15a(2) | If all three match, the command shall be executed by terminal control signals that cause the KG to erase stored keys. | Met | | 210 | 5.2.2.1.7.15b | If the Called Party #2 is not an exact copy of the Called Party #1 data field, the command shall not be executed. | Met | | 211 | 5.2.2.1.7.16 | All terminals receiving the Time Slot Preparation command shall change the manner in which they prepare their orderwire KGs for CCOW and RCCOW. | Met | | 212 | 5.2.2.1.7.16a | The terminal action shall be either: a Time Slot Zero (TS0) preparation, or Selection of new variables to prepare the KG. | Met | | 213 | 5.2.2.1.7.16b(1) | If the TS0 Flag is set, all terminals shall perform a TS0 at the frame count given in this CCOW. | Met | | 214 | 5.2.2.1.7.16b(2) | The result shall be that new variables are used to prepare the KG and that the frame count is reset to 24. | Met | | 215 | 5.2.2.1.7.16c(1) | If the Change KG Day Flag is set, all terminals shall change the KG day variable used to prepare the KG. | Met | | 216a | 5.2.2.1.7.16c(2) | The change shall occur at the frame count given in this CCOW, | Met | | 216b | 5.2.2.1.7.16c(3) | and the new KG day shall be the one given in this CCOW. | Met | | 217 | 5.2.2.1.7.16d(1) | If the Change Memory Flag is set, all terminals shall change the KG memory in use. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIRE | MENT DESCR | IPTION | STATUS | |--------------|-----------------------------|---|---|---|------------------------| | 218 | 5.2.2.1.7.16d(2) | The change shall occur at the the new KG memory shall be | | | Met | | 219 | 5.2.2.1.7.17a(1) | The terminal shall compare the numbers. | ne Calling Party | #1 number with its port | Met | | 220 | 5.2.2.1.7.17a(2) | If a match is found, the comm port. | and shall be ex | secuted for the specific | Met | | 221 | 5.2.2.1.7.17b(1) | The terminal shall compare the numbers. | ne Calling Party | #2 number with its port | Met | | 222 | 5.2.2.1.7.17b(2) | If a match is found, the comm port. | and shall be ex | secuted for the specific | Met | | 223 | 5.2.2.1.7.18(1) | If the Transmit flag is reset, it their RF transmissions. | indicates that a | Il terminals shall inhibit | Met | | 224 | 5.2.2.1.7.18(2) | The terminal shall disconnect | all I/O ports co | nnected to time slots. | Met | | 225 | 5.2.2.2(1) | The terminal shall be able to messages in the AC mode. | send 14 differer | nt mandatory RCCOW | Met | | 226 | 5.2.2.2(2) | If the terminal is required by it use RCCOW Data Transfer messages. | | | Not Applicable (Note) | | Note: Opti | ional requirement not impl | | | | I | | 227 | 5.2.2.2(3) | There shall be three common (1) the STATION ID field, (2) PARITY field. | | | Not Testable
(Note) | | Note: Gen | neral statement/definition. | Not testable. | | | | | 228 | 5.2.2.2(4) | The terminal shall test the RC in every frame to determine if RCCOW. | | | Met | | 229 | 5.2.2.2(5) | The RCCOWS, which shall b follows: Status Report A: Status Report B: Status Report B: Status Report B: Report Link Test Results: Guard List Report: Guard List Rpt: | e created by an Group 1 Group 2 Group 2 Group 1 Group 2 Group 3 Group 4 Group 5 | assignment, shall be as Code 01001 Code 10001 Code 01010 Code 10010 Code 01011 Code 01100 Code 01101 Code 01111 Code 01111 Code 01111 | Met | | 230 | 5.2.2.2.1 | The Station ID field shall ider originates the RCCOW. | _ | | Met | | 231 | 5.2.2.2(1) | The RCCOW Message Code RCCOW messages is used in | | tify which of the 17 | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|--|-----------------------| | 232 | 5.2.2.2(2) | The messages and associated codes shall be as listed below: Status Report B Code 00001 Data Transfer (Type B) Code 00010 Link Test Request Code 00100 Out-of-Service Code 00101 Information Report Two-Party Request (or Cancel Call) Conference Request (or Cancel Call)(Type B) Code 01010 Conference Party List Code 01001 Link Test Results Code 01010 Status Report A Code 01011 Ack Channel Control Request Code 01100 Guard List Report (Type B) Code 01110 Data Transfer (Type A) Conference Request (or Cancel Call)(Type A) Code 10000 Guard List Report (Type A) Code 10000 Guard List Report (Type A) Code 10001 | Met | | 233 | 5.2.2.2.3 | The parity field shall define the 2-byte CRC for RCCOW messages, which was derived in accordance with 5.2.1.3. | Met | | 234 | 5.2.2.2.4.1a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 235 | 5.2.2.2.4.1b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 236 | 5.2.2.2.4.1c | The Reporting Party field shall contain the user number of the terminal port that initiated the RCCOW. | Met | | 237 | 5.2.2.2.4.1d(1) | The Configuration Code field shall contain the configuration code of the terminal port that initiated the RCCOW. | Met | | 238 | 5.2.2.2.4.1d(2) | The Configuration Code shall define the port bit rate and the type of baseband equipment connected to the port. | Met | | 239 | 5.2.2.2.4.1d(3) | The terminal shall allow the operator to enter operationally assigned configuration codes. | Met | | 240 | 5.2.2.2.4.1d(4) | The data shall have a BCD format. | Met | | 241 | 5.2.2.2.4.1d(5) | Valid codes shall range from 1 to 99 and are operationally assigned. | Met | | 242 | 5.2.2.2.4.1e(1) | The Port Configuration Change Flag, when set, shall indicate that the terminal port has changed the configuration code. | Met | | 243 | 5.2.2.2.4.1e(2) | This Status Report B RCCOW shall be generated whenever a terminal port configuration change is made. | Met | | 244 | 5.2.2.2.4.1f | The Port Bit Rate data field shall be a 3-bit code, indicating the bit rate of the I/O port that initiated the RCCOW. The codes are as follows: 75 BPS Code 000 2400 BPS Code 100 300 BPS Code 001 4800 BPS Code 101 600 BPS Code 010 16000 BPS Code 110 1200 BPS Code 011 SPARE Code 111 | Met | | 245 | 5.2.2.2.4.1g | The Port #1 (#5) Number in Guard List shall contain a binary count from 0 to 15, which shall be the count of guard numbers in port #1 (#5). | Met | | 246 | 5.2.2.2.4.1h | The Port #2 (#6) Number in Guard List shall contain a binary count from 0 to 15, which shall be the count of guard numbers in port #2 (#6). | Not Applicable (Note) | | JITC | MIL-STD | REQUIREMENT DESCRIPTION | STATUS | |-----------|----------------------------|---|---| | REQ# | Paragraph | | • | | 247 | 5.2.2.2.4.1i | The Port #3 (#7) Number in Guard List shall contain a binary count from 0 to 15, which shall be the count of guard numbers in port #3 (#7). | Not Applicable | | 248 | 5.2.2.2.4.1j | The Port #4 (#8) Number in Guard List shall contain a binary count from 0 to 15, which shall be the count of guard numbers in port #4 (#8). | (Note) | | Note: The | terminal has one I/O port. | | | | 249 | 5.2.2.2.4.1k | The Port #1 (#5) Guard List Change Flag, when set, shall indicate that the terminal has changed the port #1 (#5) guard list. | Met | | 250 | 5.2.2.2.4.11 | The Port #2 (#6) Guard List Change Flag, when set, shall indicate that the terminal has changed the port #2 (#6) guard list. | | | 251 | 5.2.2.2.4.1m | The Port #3 (#7) Guard List Change Flag, when set, shall indicate that the terminal has changed the port #3 (#7) guard list. | Not Applicable (Note) | | 252 | 5.2.2.2.4.1n | The Port #4 (#8) Guard List Change Flag, when set, shall indicate that the terminal has changed the port #4 (#8) guard list. | | | Note: The
| terminal has one I/O port. | | T | | 253 | 5.2.2.2.4.10 | The Frame Format field shall contain the frame format in use by the terminal. | Met | | 256 | 5.2.2.2.4.2.1a(1) | The precedence field shall contain the precedence of the RCCOW to be transmitted. | Met | | 257 | 5.2.2.2.4.2.1a(2) | This bit, when set, shall indicate the message is a higher precedence than the precedence level of the RCCOW assignment field in the present frame's CCOW. | Met | | 258 | 5.2.2.2.4.2.1b | The Initial Entry Flag when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on (AC Mode only). | Met | | 259 | 5.2.2.2.4.2.1c | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted (AC Mode only). | Met | | 260 | 5.2.2.2.4.2.1d | The Requesting Party field shall contain the user number of the terminal port that initiated the RCCOW. | Met | | 261 | 5.2.2.2.4.2.1e | The Requested Party field shall contain the user number of the terminal port to which the RCCOW is directed. | Met | | 262 | 5.2.2.2.4.2.1f | The Data Block field shall be composed of four bytes of data. | Met | | 263 | 5.2.2.2.4.2.2a | The Precedence field shall contain the precedence of the RCCOW to be transmitted. | Met | | 264 | 5.2.2.2.4.2.2b | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on (AC Mode only). | Met | | 265 | 5.2.2.2.4.2.2c | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted (AC Mode only). | Met | | 266 | 5.2.2.2.4.2.2d | The Requested Party field shall contain the user number of the terminal port that initiated the RCCOW. | Met | | 267 | 5.2.2.2.4.2.2e | The Requested Party field shall contain the user number of the terminal port to which the RCCOW is directed. | Met | | 268 | 5.2.2.2.4.2.2f | The Data Block field shall be composed of four bytes of data. | Met | | 269 | 5.2.2.2.4.3a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 270 | 5.2.2.2.4.3b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 271 | 5.2.2.2.4.3c | The Requesting Party field shall contain the terminal's base address (port #1). | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|--------------------------|--|------------------------| | 272 | 5.2.2.2.4.3d | The 9.6-kbps Flag, when set, shall indicate that the terminal requests a 9.6-kbps link test. | Met | | 273 | 5.2.2.2.4.3e | The 19.2-kbps Flag, when set, shall indicate that the terminal requests a 19.2-kbps link test. | Met | | 274 | 5.2.2.4.3f | The 32-kbps Flag, when set, shall indicate that the terminal requests a 32-kbps link test. | Met | | 275 | 5.2.2.2.4.4a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Not Applicable (Note) | | Note: This | RCCOW cannot be the | Initial Entry Flag. (It is not possible for it to be the first RCCOW created after the unit power ha | as been turned on.) | | 276 | 5.2.2.2.4.4b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 277 | 5.2.2.2.4.4c | The Requesting Party field shall contain the user number of the terminal port. | Met | | 278 | 5.2.2.2.4.5a | The Precedence field shall contain the precedence of the RCCOW to be transmitted. | Met | | 279 | 5.2.2.2.4.5b | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 280 | 5.2.2.2.4.5c | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 281 | 5.2.2.2.4.5d | The Requesting Party field shall contain the user number of the terminal. | Met | | 282 | 5.2.2.2.4.5e(1) | The Time field shall contain the estimated time out-of-service for the port. | Met | | 283 | 5.2.2.2.4.5e(2) | This data shall consist of 2-bit chronological exponent and a 6-bit binary time field. | Met | | 284 | 5.2.2.2.4.5f(1) | The Out-of-Service Code field shall contain the reason code for going out of service. | Met | | 285 | 5.2.2.2.4.5f(2) | The Out-of-Service Code shall have a BCD format. | Met | | 286 | 5.2.2.2.4.5f(3) | Valid codes shall range from 0 to 99 and are operationally assigned. | Met | | 287 | 5.2.2.2.4.6(1) | The terminal shall generate the Information Report RCCOW message in response to the Information Request CCOW from the channel controller. | Met | | 288 | 5.2.2.2.4.6(2) | A terminal that, for operational reasons, is prohibited from responding to the Information Request CCOWs shall be able to report this limitation to the channel controller. | Not Testable
(Note) | | Note: Net | work assigned. Not testa | | | | 289 | 5.2.2.2.4.6(3) | The terminal Information Report response message shall be generated in accordance with 5.2.2.2.4.6.1, 5.2.2.2.4.6.2, figure 20-6 [of the MIL-STD], and the data fields defined below. | Met | | 290 | 5.2.2.2.4.6a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on (AC Mode only). | Met | | 291 | 5.2.2.2.4.6b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted (AC Mode only). | Met | | 292 | 5.2.2.2.4.6c | The Responding Party field shall contain the user number of the port. | Met | | 293 | 5.2.2.2.4.6d(1) | The Response Code field shall contain the response code to the information request. | Met | | 294 | 5.2.2.2.4.6d(2) | Valid data shall range from: 1 to 16383 (AC Mode) and 1 to 255 (DC Mode) and are operationally assigned. | Met | | JITC | MIL-STD | DECLUBEMENT DESCRIPTION | STATUS | |------------|--------------------------|---|--------------------------| | REQ# | Paragraph | REQUIREMENT DESCRIPTION | SIAIUS | | 295 | 5.2.2.2.4.6.1(1) | When the terminal receives an Information Request command from the channel controller, it shall respond with an Information Report message before sending any other RCCOW message. | Met | | 296 | 5.2.2.2.4.6.1(2) | The terminal (operator) shall respond to the information request by sending an operationally assigned code in the Response Code field of the Information Report message. | Met | | 297 | 5.2.2.2.4.6.2(1) | When a terminal port has been constantly keyed for 17 minutes, and has not been configured for legal constant key operation, it shall automatically generate and send this Information Report to the channel controller. | Met | | 298 | 5.2.2.2.4.6.2(2) | This message shall be sent before sending any other RCCOW message. | Met | | 299 | 5.2.2.2.4.6.2(3) | When a port's constant transmit capability is enabled, the terminal shall not output receive data for the port, regardless of whether the terminal port is keyed or not keyed. | Not Applicable
(Note) | | Note: This | terminal does not have a | n optional constant key enable setting. | | | 300 | 5.2.2.2.4.6.2(4) | An Information Report Response code of 200 shall be sent by the terminal in this message. | Met | | 301 | 5.2.2.2.4.6.2(5) | The Constant Key Alarm Information Report capability shall function when the terminal is operating in either the AC or DC mode. | Met | | 302 | 5.2.2.2.4.7a | The Precedence shall contain the precedence of the RCCOW. | Met | | 303 | 5.2.2.2.4.7b | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 304 | 5.2.2.2.4.7c | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 305 | 5.2.2.2.4.7d | The Requesting Party field shall contain the user number of the terminal port. | Met | | 306 | 5.2.2.2.4.7e | The Cancel Call Flag, when set, shall indicate that the requesting party wants its two-party request cancelled. | Met | | 307 | 5.2.2.2.4.7f | The Requested Party field shall contain the user number of the terminal port that has been requested for communications. | Met | | 308 | 5.2.2.2.4.7g(1) | The Configuration Code field shall contain the configuration code of the terminal port that initiated the RCCOW. | Met | | 309 | 5.2.2.2.4.7g(2) | The data shall have a BCD format. | Met | | 310 | 5.2.2.2.4.7g(3) | Valid codes shall range from 1 to 99 and are operationally assigned. | Met | | 311 | 5.2.2.2.4.7h(1) | The Contention Report field shall contain a binary count of how may times the terminal port has transmitted two-party or conference request RCCOWs without receiving a CALL ACK. | Met | | 312 | 5.2.2.2.4.7h(2) | The counter shall be reset each time a CALL ACK is received for either of these two RCCOWs or when a Status Report A RCCOW is sent and a CALL ACK is received for the status report. | Met | | 313 | 5.2.2.2.4.8.1(1) | If the number of requested users is more than
one, two RCCOWS shall be created. | Met | | 314 | 5.2.2.2.4.8.1(2) | The second of these shall be the Conference Party List. | Met | | 315 | 5.2.2.2.4.8.1a | The Precedence field shall contain the precedence of the RCCOW. | Met | | 316 | 5.2.2.2.4.8.1b | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 317 | 5.2.2.2.4.8.1c | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 318 | 5.2.2.2.4.8.1d | The Requesting Party field shall contain the user number of the terminal port. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---------------------------|---|-----------------------| | 319 | 5.2.2.2.4.8.1e | The Cancel Call Flag, when set, shall indicate that the requesting party wants its conference request cancelled. | Met | | 320a | 5.2.2.2.4.8.1f(1) | The List Flag, when set, shall indicate that the conference request is for more than two users; | Met | | 320b | 5.2.2.2.4.8.1f(2) | therefore, the controller shall request the conference party list RCCOW with and RCCOW assignment. | Not Applicable (Note) | | Note: This | is a Channel Controller r | equirement and, therefore, is not applicable to the terminal. | T | | 321 | 5.2.2.2.4.8.1g | The Requested Party #1 field shall contain the user number of the terminal port that has been requested for communication. | Met | | 322 | 5.2.2.2.4.8.1h(1) | The Contention Report field shall contain a binary count of how may times the terminal port has transmitted two party or conference request RCCOWs without receiving a CALL ACK. | Met | | 323 | 5.2.2.2.4.8.1h(2) | The counter shall be reset each time a CALL ACK is received for either of these two RCCOWs or when a Status Report A RCCOW is sent and a CALL ACK is received for the status report. | Met | | 324 | 5.2.2.2.4.8.1i(1) | The Time field shall contain the estimated time for which the communications circuit is needed. | Met | | 325 | 5.2.2.2.4.8.1i(2) | The data shall consist of a 2-bit chronological exponent and a 6-bit binary time field. | Met | | 326 | 5.2.2.2.4.8.1j(1) | The Configuration Code field shall contain the configuration code of the port. | Met | | 327 | 5.2.2.2.4.8.1j(2) | The data shall have a BCD format. | Met | | 328 | 5.2.2.2.4.8.1j(3) | Valid codes shall range from 1 to 99 and are operationally assigned. | Met | | 329 | 5.2.2.2.4.8.2 | The terminal shall respond to the controller's direction by creating an RCCOW whose fields are as follows: | Met | | 330 | 5.2.2.2.4.8.2a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Not Applicable (Note) | | Note: This | RCCOW cannot be the I | nitial Entry Flag. (It is not possible for it to be the first RCCOW created after the unit power ha | as been turned on.) | | 331 | 5.2.2.2.4.8.2b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 332 | 5.2.2.2.4.8.2c | The Requested Party #2 field shall define the user number of the second requested party with which the conference is to be established. | Met | | 333 | 5.2.2.2.4.8.2d(1) | The Requested Party #3 field shall define the user number of the third requested party with which the conference is to be established. | Met | | 334 | 5.2.2.2.4.8.2d(2) | If the field is not used, all bits shall be set to zero (0). | Met | | 335 | 5.2.2.2.4.8.2e(1) | The Requested Party #4 field shall define the user number of the fourth requested party with which the conference is to be established. | Met | | 336 | 5.2.2.2.4.8.2e(2) | If the field is not used, all bits shall be set to zero (0). | Met | | 337 | 5.2.2.2.4.8.2f(1) | The Requested Party #5 field shall define the user number of the fifth requested party with which the conference is to be established. | Met | | 338 | 5.2.2.2.4.8.2f(2) | If the field is not used, all bits shall be set to zero (0). | Met | | 339 | 5.2.2.2.4.8.3(1) | If the number of requested users is three or greater, two RCCOWs shall be created. | Met | | 340 | 5.2.2.2.4.8.3(2) | The second of these shall be the conference party list. | Met | | 341 | 5.2.2.2.4.8.3a(1) | The Precedence field shall contain the precedence of the RCCOW. | Met | | 342 | 5.2.2.2.4.8.3a(2) | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 343 | 5.2.2.2.4.8.3a(3) | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|------------------------|---|-----------------------| | 344 | 5.2.2.2.4.8.3a(4) | The Requesting Party field shall contain the user number of the terminal port. | Met | | 345 | 5.2.2.2.4.8.3a(5) | The Cancel Call Flag, when set, shall indicate that the requesting party wants its conference request cancelled. | Met | | 346 | 5.2.2.2.4.8.3a(6) | The List Flag, when set, shall indicate that the conference request is for more than two users; therefore, the controller shall request the conference party list RCCOW with an RCCOW assignment. | Met | | 347 | 5.2.2.2.4.8.3a(7) | The Requested Party #1 field shall contain the user number of the terminal port that has been requested for communication. | Met | | 348 | 5.2.2.2.4.8.3a(8)a | The Contention Report field shall contain a binary count of how may times the terminal port has transmitted two party or conference request RCCOWs without receiving a CALL ACK. | Met | | 349 | 5.2.2.2.4.8.3a(8)b | The counter shall only be reset each time a CALL ACK is received for either of these two RCCOWs or when a Status Report A RCCOW is sent and a CALL ACK is received for the status report. | Met | | 350 | 5.2.2.2.4.8.3a(9) | The Requested Party #2 field shall contain the user number of the terminal port that has been requested for communication. | Met | | 351 | 5.2.2.2.4.8.3a(10)a | The Time field shall contain the estimated time for which the communications circuit is needed. | Met | | 352 | 5.2.2.2.4.8.3a(10)b | The data shall consist of a 2-bit chronological exponent and a 6-bit binary time field. | Met | | 353 | 5.2.2.2.4.8.3a(11)a | The Configuration Code field shall contain the configuration code of the port. | Met | | 354 | 5.2.2.2.4.8.3a(11)b | The data shall have a BCD format. | Met | | 355 | 5.2.2.2.4.8.3a(11)c | Valid codes shall range from 1 to 99 and are operationally assigned. | Met | | 356 | 5.2.2.2.4.8.3b(1) | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Not Applicable (Note) | | Note: This | RCCOW cannot be the Ir | nitial Entry Flag. (It is not possible for it to be the first RCCOW created after the unit power ha | as been turned on.) | | 357 | 5.2.2.2.4.8.3b(2) | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 358 | 5.2.2.2.4.8.3b(3)a | The Requested Party #1 to #4 fields shall contain user numbers for up to four additional terminal ports, for which the conference is requested. | Met | | 359 | 5.2.2.2.4.8.3b(3)b | All bits in unused fields shall be set to zero (0). | Met | | 360 | 5.2.2.2.4.9 | This RCCOW shall be generated by a terminal in response to a Report Link Test Results assignment in a CCOW's Assignment field. | Met | | 361 | 5.2.2.2.4.9a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 362 | 5.2.2.2.4.9b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 363 | 5.2.2.2.4.9c | The Reporting Party field shall contain the terminal's base user number. | Met | | 364 | 5.2.2.2.4.9d | The Symbol Errors field shall contain the count of symbol errors received during the link test. | Met | | 365 | 5.2.2.2.4.9e | The Symbol Erasures field shall contain the count of data symbols erased due to pulsed radio frequency interference (RFI) during a link test. | Met | | 366 | 5.2.2.2.4.9f | The Missed Acquisitions field shall contain the count of missed acquisitions during the link test. | Met | | 367 | 5.2.2.2.4.9g | The Bits Tested field shall contain the length of the link test in bits tested. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|-----------------------------|---|--------------------------| | 368 | 5.2.2.2.4.9h | The 9.6-kbps Flag, when set, shall indicate that the link test was performed at 9.6 kbps. | Met | | 369 | 5.2.2.2.4.9i | The 19.2-kbps Flag, when set, shall indicate that the link test was performed at 19.2 kbps. | Met | |
370 | 5.2.2.2.4.9j | The 32-kbps Flag, when set, shall indicate that the link test was performed at 32 kbps. | Met | | 371 | 5.2.2.2.4.9k | The Contention Flag, when set, shall indicate that slot contention was detected during the link test. | Met | | 372 | 5.2.2.2.4.10 | The STATUS REPORT A RCCOW shall contain status information that is not contained in Status Report B. | Met | | 373 | 5.2.2.2.4.10a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Met | | 374 | 5.2.2.2.4.10b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 375 | 5.2.2.2.4.10c | The Reporting Party field shall contain the base user number of the terminal assigned to create the RCCOW. | Met | | 376 | 5.2.2.2.4.10d(1) | The Port #1 to Port #4 (or Port #5 to Port #8) fields shall contain a code that indicates the bit rate for each port. | Met | | 377 | 5.2.2.4.10d(2) | The bit rate code assignments shall be as follows: 75 BPS Code 000 2400 BPS Code 100 300 BPS Code 001 4800 BPS Code 101 600 BPS Code 010 16000 BPS Code 110 1200 BPS Code 011 SPARE Code 111 | Met | | 378 | 5.2.2.4.10e | The Port #1 to Port #4 (or Port #5 to Port #8) Slot Assignment Number fields shall contain the slot number (binary) to which each port is assigned. | Met | | 379 | 5.2.2.2.4.10f | The Number of Users In Guard List field shall contain the total count of guarded numbers in all terminal port guard lists. | Met | | 380 | 5.2.2.4.10g(1) | The Contention Report field shall contain a binary count of the sum of all times that all ports within a terminal have transmitted Call Request RCCOWs (Two party or conference) without receiving CALL ACKs. | Met | | 381 | 5.2.2.2.4.10g(2) | All individual port contention counters within the terminal shall be cleared when a CALL ACK is received for the RCCOW. | Met | | 382 | 5.2.2.2.4.10h | The Special Frame Format Flag, when set, shall indicate that this terminal is operating with a frame format other than the one transmitted in a master frame CCOW. | Met | | 383 | 5.2.2.2.4.10i | The Frequency Change Flag, when set, shall indicate that this terminal is capable of frequency switching. | Met | | 384 | 5.2.2.2.4.10j | The Full Duplex Flag, when set, shall indicate that this terminal is operating with a full-duplex receiver/transmitter. | Met | | Note: The | terminal is half-duplex, or | | | | 385 | 5.2.2.2.4.11 | A terminal that has channel control capability shall transmit the Acknowledge Channel Control Request to acknowledge the controller's channel control handover request CCOW. | | | 386 | 5.2.2.2.4.11a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by a terminal after its power has been turned on. | Not Applicable
(Note) | | 387 | 5.2.2.2.4.11b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | (HOLE) | | 388 | 5.2.2.2.4.11c | The Data Transfer Flag, when set, shall indicate that acknowledging terminal requires additional system configuration information. | | | Note: Opti | onal requirements not imp | plemented in this terminal. | | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---------------------------|---|--------------------------| | 389 | 5.2.2.2.4.11d | The Ready Flag, when set, shall indicate that acknowledging terminal is ready to perform the handover. | | | 390 | 5.2.2.2.4.11e | The Request Control Flag, when set, shall indicate that acknowledging terminal is requesting a channel control handover. | | | 391 | 5.2.2.2.4.11f | The Channel Frequency field shall contain the RF channel frequency number, as shown in appendix C, for which control is to be handed over. | Not Applicable
(Note) | | 392 | 5.2.2.2.4.11g | The Current Time 2-byte field shall contain the current time in hours and minutes, as shown in figure 20-12 [of the MIL-STD]. | | | 393 | 5.2.2.2.4.11h | The Handover Time 2-byte field shall contain the current time in hours and minutes as shown in figure 20-12 [of the MIL-STD]. | | | Note: Opti | onal requirements not imp | plemented in this terminal. | | | 394 | 5.2.2.2.4.12(1) | The terminal shall generate the Guard List Report RCCOW message in response to a Guard List Report assignment directed to it by the channel controller. | Met | | 395 | 5.2.2.2.4.12(2) | Two types of Guard List Reports are defined: (1) Type A, which is mandatory and shall be used by 16-bit address terminals, and (2) Type B, which is optional and used by 14-bit address terminals. | Met | | 396 | 5.2.2.2.4.12.1(1) | The Guard List Report Type A is mandatory and shall be used by 16-bit address terminals. | Met | | 397 | 5.2.2.2.4.12.1(2) | The Guard List Report Type A shall identify a group of three addresses from the terminal's guard list. | Met | | 398 | 5.2.2.2.4.12.1(3) | The group of addresses to be reported shall be as defined by the controller in the CCOW's RCCOW Assignment field. | Met | | 399 | 5.2.2.2.4.12.1(4) | The Guard List Report Type A messages shall be developed in accordance with figure 20-13 [of the MIL-STD] and the data field definitions described below. | Met | | 400 | 5.2.2.2.4.12.1a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by the terminal after its power as been turned on. | Met | | 401 | 5.2.2.2.4.12.1b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 402 | 5.2.2.4.12.1c | The Port Guarding #1 field shall define the terminal port number (1 through 16) that guards the address defined by the Guarded #1 field of this message. | Met | | 403 | 5.2.2.2.4.12.1d | The Port Guarding #2 field shall define the terminal port number (1 through 16) that guards the address defined by the Guarded #2 field of this message. | Met | | 404 | 5.2.2.2.4.12.1e | The Port Guarding #3 field shall define the terminal port number (1 through 16) that guards the address defined by the Guarded #3 field of this message. | Met | | 405 | 5.2.2.2.4.12.1f | The Guarded #1 field shall contain the number 1 address, as reported by this message, and which is guarded by the terminal port defined in Port Guarding #1. | Met | | 406 | 5.2.2.2.4.12.1g | The Guarded #2 field shall contain the number 1 address, as reported by this message, and which is guarded by the terminal port defined in Port Guarding #2. | Met | | 407 | 5.2.2.2.4.12.1h | The Guarded #3 field shall contain the number 1 address, as reported by this message, and which is guarded by the terminal port defined in Port Guarding #3. | Met | | 408 | 5.2.2.2.4.12.1(5) | There shall be no gaps (empty fields) within the list. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|-----------------------------|--|------------------------| | 409 | 5.2.2.2.4.12.1(6) | The list shall then be reported in groups as specified by the table (page 89 [of the MIL-STD]) and requested in a RCCOW assignment. | Met | | 410 | 5.2.2.2.4.12.2 | The Guard List Report Type B (Optional) RCCOW shall be generated by a terminal to Report four numbers in its guard lists in response to a Guard List Report assignment in the RCCOW Assignment field of a CCOW. | Met | | 411 | 5.2.2.2.4.12.2a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by the terminal after its power as been turned on. | Met | | 412 | 5.2.2.2.4.12.2b | The Stored Call Flag, when set, shall indicate that the terminal has another RCCOW stored in queue to be transmitted. | Met | | 413 | 5.2.2.2.4.12.2c | The Guarded #1 to #4 (or Guarded #5 to #8) fields shall contain up to four guard numbers. | Met | | 414 | 5.2.2.2.4.12.2e(1) | The Port Guarding #1 to #4 (or Port Guarding #5 to #8) fields shall contain a code that identifies the terminal port number corresponding to each of the reported guard numbers. | Met | | 415 | 5.2.2.2.4.12.2e(2) | The coding shall be as follows: Field Code = 0 Guarded = 00 Address = 1 Field Code = 0 Guarded = 01 Address = 2 Field Code = 0 Guarded = 10 Address = 3 Field Code = 0 Guarded = 11 Address = 4 Field Code = 1 Guarded = 00 Address = 5 Field Code = 1 Guarded = 01 Address = 6 Field Code = 1 Guarded = 10 Address = 7 Field Code = 1 Guarded = 11 Address = 8 | Met | | 416 | 5.2.2.2.4.12.3(1) | The terminal shall respond to this direction with the RCCOW messages developed in accordance with 5.2.2.2.4.12.2 a through e. | Met | | 417 | 5.2.2.2.4.12.3(2) | Up to 15 different guard list numbers shall be stored in the 20 possible locations (one guard list number per location) and reported, as shown in the following table (see page 91 [of the MIL-STD]). | Met | | 418 | 5.2.2.2.4.13a | The Initial Entry Flag, when set, shall indicate that this is the first RCCOW created by the terminal after power has been turned on. | Met | | 419 | 5.2.2.2.4.13b | The Stored Call Flag, when set, shall indicate that the terminal
has another RCCOW stored in queue to be transmitted. | Met | | 420 | 5.2.2.2.4.13c | The Requesting User field shall contain the user number of the terminal port. | Met | | 421 | 5.2.2.4.13d | The Requested User #1 field shall define the ID number of the first user who is paged. | Met | | 422 | 5.2.2.4.13e | The Requested User #2 field shall define the ID number of the second user who is paged. | Met | | 423 | 5.2.2.4.13f | The Requested User #3 field shall define the ID number of the third user who is paged. | Met | | 424 | 5.2.2.3 | The following factors shall affect the choice of transmit time for RCCOW messages: Transmit enable, Dedicated RCCOW access, and Random RCCOW access. | Not Tootable | | 425 | 5.2.2.3.1(1) | The terminal shall perform various checks to determine if RCCOW transmit is enabled. | Not Testable
(Note) | | 426 | 5.2.2.3.1(2) | If so, the terminal shall move into either the dedicated or random RCCOW access selection process. | | | Note: Gen | eral statements/definitions | | | | 427 | 5.2.2.3.1(3) | The checks, and the possible results, are listed below in the order in which they shall occur: | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|---|--------| | 428 | 5.2.2.3.1a(1) | When a terminal fails to receive a CCOW, RCCOW transmission shall be inhibited in the next frame. | Met | | 429 | 5.2.2.3.1a(2) | After a succession of six lost CCOWs, the terminal shall reenter the CCOW acquisition process. | Met | | 430 | 5.2.2.3.1b | If a terminal does not have range lock, RCCOW transmissions shall be inhibited. | Met | | 431 | 5.2.2.3.1c | RCCOW transmissions shall be inhibited in any frame in which a terminal transmit inhibit condition occurs. | Met | | 432 | 5.2.2.3.1d(1) | The terminal shall reach this point when it has been determined that an RCCOW inhibit condition does not exist. | Met | | 433 | 5.2.2.3.1d(2) | The RCCOW assignment code shall then be tested, and the terminal shall either enter dedicated RCCOW access or random RCCOW access. | Met | | 434 | 5.2.2.3.2(1) | Dedicated RCCOW access shall be entered when the RCCOW assignment requests a specified terminal to transmit an RCCOW. | Met | | 435 | 5.2.2.3.2(2) | The terminal shall halt all other RCCOW processing to reply immediately with the specified RCCOW in the next frame. | Met | | 436 | 5.2.2.3.2(3) | The first step shall be to save data that states which RCCOW was being processed or transmitted in the last frame. | Met | | 437 | 5.2.2.3.2(4) | The terminal shall then determine the specific RCCOW assignment to execute. | Met | | 438 | 5.2.2.3.2(5) | The assignments, and possible actions, shall be as follows: | Met | | 439 | 5.2.2.3.2a(1) | When a terminal receives the Conference List Report RCCOW assignment, the terminal shall transmit its conference list. | Met | | 440 | 5.2.2.3.2a(2) | This RCCOW shall be created by a conference request entry at the terminal. | Met | | 441 | 5.2.2.3.2a(3) | The terminal shall then perform a check to determine if any other RCCOWs are stored in queue. | Met | | 442 | 5.2.2.3.2a(4) | If there are, the Stored Call Flag shall be set. | Met | | 443 | 5.2.2.3.2a(5) | The message shall then be formatted and transmitted over the RF channel. | Met | | 444 | 5.2.2.3.2a(6) | The terminal shall not delete this RCCOW from the transmitting queue until a positive CALL ACK is received. | Met | | 445 | 5.2.2.3.2a(7) | If it is not acknowledged, it shall remain in the queue and wait for another Conference List Report RCCOW assignment. | Met | | 446 | 5.2.2.3.2b(1) | When a terminal receives the Dedicated RCCOW Slot RCCOW assignment, the terminal shall transmit any RCCOW it has in queue. | Met | | 447 | 5.2.2.3.2b(2) | If the terminal does not have an RCCOW in queue, it shall create and transmit a Status Report A. | Met | | 448 | 5.2.2.3.2b(3) | Since the CCOW does not request any particular RCCOW, the terminal shall use random RCCOW access processing to find an RCCOW to transmit. | Met | | 449 | 5.2.2.3.2b(4) | Transmit processing shall also be handled by the random RCCOW access process (as described in 5.2.2.3.3). | Met | | 450 | 5.2.2.3.2c(1) | When a terminal receives the Status Report A: Group 1 or Status Report A: Group 2 RCCOW assignment, the terminal shall transmit the corresponding Status Report A. | Met | | 451a | 5.2.2.3.2c(2) | This RCCOW shall be transmitted only once per assignment | Met | | 451b | 5.2.2.3.2c(3) | and shall be deleted from the queue after its first transmission. | Met | | JITC | MIL-STD | REQUIREMENT DESCRIPTION | STATUS | |-----------|----------------------------------|--|--------------| | REQ# | Paragraph | | OTATOO | | | | When a terminal receives the Status Report B: Group 1 or Status | | | 452 | 5.2.2.3.2d(1) | Report B: Group 2 RCCOW assignment, the terminal shall transmit the | Met | | | | corresponding Status Report B. | | | 453a | 5.2.2.3.2d(2) | This RCCOW shall be transmitted only once per assignment | Met | | 453b | 5.2.2.3.2d(3) | and shall be deleted from the queue after its first transmission. | Met | | 454 | 5.2.2.3.2e(1) | When a terminal receives the Report Link Test Results RCCOW assignment, the terminal shall transmit a Link Test Results RCCOW. | Met | | 455a | 5.2.2.3.2e(2) | This RCCOW shall be transmitted only once per assignment | Met | | 455b | 5.2.2.3.2e(3) | and shall be deleted from the queue after its first transmission. | Met | | 456 | 5.2.2.3.2f(1) | When a terminal receives the Guard List Report: Group 1 RCCOW assignment, the terminal shall transmit the Guard List Report: Group 1 message. | Met | | 457a | 5.2.2.3.2f(2) | This RCCOW shall be transmitted only once per assignment | Met | | 457b | 5.2.2.3.2f(3) | and shall be deleted from the queue after its first transmission. | Met | | | . , | When a terminal receives the Guard List Report: Group 2 RCCOW | | | 458 | 5.2.2.3.2g(1) | assignment, the terminal shall transmit the Guard List Report: Group 2 message. | Met | | 459a | 5.2.2.3.2g(2) | This RCCOW shall be transmitted only once per assignment | Met | | 459b | 5.2.2.3.2g(3) | and shall be deleted from the queue after its first transmission. | Met | | | 0.2.2.0.29(0) | When a terminal receives the Guard List Report: Group 3 RCCOW | | | 460 | 5.2.2.3.2h(1) | assignment, the terminal shall transmit the Guard List Report: Group 3 message. | Met | | 461a | 5.2.2.3.2h(2) | This RCCOW shall be transmitted only once per assignment | Met | | 461b | 5.2.2.3.2h(3) | and shall be deleted from the queue after its first transmission. | Met | | 462 | 5.2.2.3.2i(1) | When a terminal receives the Guard List Report: Group 4 RCCOW assignment, the terminal shall transmit the Guard List Report: Group 4 message. | Met | | 463a | 5.2.2.3.2i(2) | This RCCOW shall be transmitted only once per assignment | Met | | 463b | 5.2.2.3.2i(3) | and shall be deleted from the queue after its first transmission. | Met | | 464 | 5.2.2.3.2j(1) | When a terminal receives the Guard List Report: Group 5 RCCOW assignment, the terminal shall transmit the Guard List Report: Group 5 message. | Met | | 465a | 5.2.2.3.2j(2) | This RCCOW shall be transmitted only once per assignment | Met | | 465b | 5.2.2.3.2j(3) | and shall be deleted from the queue after its first transmission. | Met | | 466 | 5.2.2.3.2k | When a terminal receives the RCCOW Inhibit RCCOW assignment, the terminal shall inhibit its RCCOW transmission in this frame. | Met | | 467 | 5.2.2.3.3 | The terminal shall search its RCCOW queues to select an RCCOW for transmission. | Not Testable | | 468 | 5.2.2.3.3a(1) | The terminal shall perform specific checks to determine an RCCOW to transmit. | (Note) | | Note: Gen | ı
ıeral statements/definitior | | | | 469 | 5.2.2.3.3a(2) | The checks shall be performed in the following sequence: | Met | | 470 | 5.2.2.3.3a.1(1) | The RCCOW assignment shall be checked to determine if this frame is dedicated to another terminal. | Met | | 471 | 5.2.2.3.3a.1(2) | If it is, the terminal shall inhibit RCCOW transmission. | Met | | 472 | 5.2.2.3.3a.1(3) | If the frame is not dedicated, the next check shall be performed. | Met | | 473 | 5.2.2.3.3a.2(1) | The terminal shall check to determine if it transmitted a dedicated RCCOW in the last frame. | Met | | 474a | 5.2.2.3.3a.2(2) | If a dedicated RCCOW was transmitted, it shall be cleared from the queue (except for a conference list report), | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---------------------------|--|-----------------------| | 474b | 5.2.2.3.3a.2(3) | and any RCCOW that was interrupted by the dedicated RCCOW shall be recovered for transmission. | Met | | 475 | 5.2.2.3.3a.2(4) | The next check shall then be performed. | Met | | 476 | 5.2.2.3.3a.3(1) | The terminal shall check to determine if there is an Acknowledge Channel Control Request RCCOW to transmit. | Not Applicable (Note) | | 477 | 5.2.2.3.3a.3(2) | If there is, the terminal shall check for an RCCOW with a precedence. | (Note) | | Note: Opt | ional
requirements not im | plemented in the terminal. | | | 478 | 5.2.2.3.3a.3(3) | If there is not an Acknowledge Channel Control Request RCCOW, the terminal shall check for an RCCOW with a precedence. | Met | | 479 | 5.2.2.3.3a.3(4) | When the RCCOW with the highest precedence has been found, the terminal shall determine when to transmit the RCCOW. | Met | | 480 | 5.2.2.3.3a.3(5) | If there is not an RCCOW with a precedence, the terminal shall check for an RCCOW without a precedence. | Met | | 481 | 5.2.2.3.3a.3(6) | If an RCCOW without a precedence is found, the terminal shall determine when to transmit the RCCOW. | Met | | 482 | 5.2.2.3.3a.3(7) | If more than one RCCOW is found at any level, the first one transmitted shall be selected on a first in/first out basis. | Met | | 483 | 5.2.2.3.3b(1) | To determine when and how often to transmit a selected RCCOW, the terminal shall use decision processes based on the type of RCCOW to be transmitted. | Met | | 484 | 5.2.2.3.3b(2) | A first-in/first-out decision process shall be used when more than one RCCOW of the same priority or precedence level exists in the queue. | Met | | 485 | 5.2.2.3.3b(3) | The types of RCCOWS in their order of importance shall be as follows: | Met | | 486 | 5.2.2.3.3b.1(1) | The Dedicated RCCOW type of RCCOW is requested by the RCCOW assignment and shall have the highest priority to be transmitted. | Met | | 487 | 5.2.2.3.3b.1(2) | It shall pre-empt the transmission of any other RCCOW. | Met | | 488a | 5.2.2.3.3b.1(3) | The Dedicated RCCOW shall be transmitted only once | Met | | 488b | 5.2.2.3.3b.1(4) | and shall be deleted from the queue (except for conference party list) after its first transmission. | Met | | 489 | 5.2.2.3.3b.1(5) | Any RCCOW that was pre-empted from transmission shall be recovered to renew the transmit processing. | Met | | 490 | 5.2.2.3.3b.2(1) | The Acknowledge Channel Control Request RCCOW type of RCCOW shall have the second highest priority to be transmitted. | | | 491 | 5.2.2.3.3b.2(2) | It shall pre-empt the transmission of any RCCOW except for a dedicated RCCOW. | | | 492 | 5.2.2.3.3b.2(3) | The RCCOW shall be transmitted immediately upon appearing in queue. | | | 493 | 5.2.2.3.3b.2(4) | The RCCOW shall remain in queue for a random (less than 20) number of frames. | Not Applicable | | 494 | 5.2.2.3.3b.2(5) | If the terminal does not receive a CALL ACK, the RCCOW shall be transmitted again, still remaining in queue for a random (less than 20) number of frames. | (Note) | | 495 | 5.2.2.3.3b.2(6) | If the second transmission does not receive a CALL ACK, the RCCOW shall be cleared from the queue, requiring a re-entry for further transmission. | | | 496 | 5.2.2.3.3b.2(7) | If a CALL ACK is received any time during transmit processing, the RCCOW shall be cleared from the queue. | | | Note: Opt | ional requirements not im | plemented in the terminal. | • | | 497 | 5.2.2.3.3b.3(1) | (RCCOW with a precedence) This shall have a precedence contained within it, indicating the message's priority. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|--------------------------|---|-----------------------| | 498 | 5.2.2.3.3b.3(2) | This type of RCCOW shall be as illustrated in figures 20-2, 20-5, 20-7, and 20-8 [of the MIL-STD]. | Met | | 499 | 5.2.2.3.3b.3(3) | This type of RCCOW shall have the third highest priority to be transmitted. | Met | | 500 | 5.2.2.3.3b.3(4) | It shall preempt the transmission of any RCCOW with a lower precedence (highest precedence RCCOW shall always be transmitted first), as well as any RCCOW with no precedence. | Met | | 501 | 5.2.2.3.3b.3a(1) | The decision to transmit this type of RCCOW shall be based on a minimum frame precedence value contained in the RCCOW assignment. | Met | | 502 | 5.2.2.3.3b.3a(2) | The RCCOW shall be transmitted for the first time in any frame in which its precedence is equal to or greater than the minimum frame precedence. | Met | | 503 | 5.2.2.3.3b.3a(3) | The RCCOW shall remain in queue for a random (less than 20) number of frames. | Met | | 504 | 5.2.2.3.3b.3a(4) | If the terminal does not receive a CALL ACK, it shall undergo more checking to determine when the second transmission shall take place. | Met | | 505 | 5.2.2.3.3b.3b(1) | The second transmission shall depend on the frame precedence in which the first transmission took place. | Met | | 506 | 5.2.2.3.3b.3b(2) | If the first transmission took place when the RCCOW precedence and the frame precedence were equal, the second transmission shall occur in the first frame in which the RCCOW precedence is equal to or greater than the frame precedence. | Met | | 507 | 5.2.2.3.3b.3b(3) | If the first transmission took place when the RCCOW precedence was greater than the frame precedence, the next eight frames shall be checked to find a frame in which the RCCOW precedence and frame precedence are equal. | Met | | 508 | 5.2.2.3.3b.3b(4) | If an equal precedence frame is found within the eight-frame check period, the second transmission of the RCCOW shall occur in that frame. | Met | | 509 | 5.2.2.3.3b.3b(5) | If an equal precedence frame does not occur, the second transmission of the RCCOW shall occur in the next frame, after the eight-frame check period, where the RCCOW precedence is equal to or greater than the frame precedence. | Met | | 510 | 5.2.2.3.3b.3c(1) | After the second transmission, the RCCOW shall remain in queue for a random (less than 20) number of frames. | Met | | 511 | 5.2.2.3.3b.3c(2) | If the second transmission does not receive a CALL ACK, the RCCOW shall be cleared from the queue, requiring a re-entry for further transmission. | Met | | 512 | 5.2.2.3.3b.3c(3) | If a CALL ACK is received any time during transmit processing, the RCCOW shall be cleared from the queue. | Not Applicable (Note) | | Note: This | requirement is not corre | t in the MIL-STD. It is removed in MIL-STD-188-183A. | | | 513 | 5.2.2.3.3b.4(1) | RCCOW without a Precedence: This type of RCCOW has no priority to be transmitted and shall be processed at any time in which there are no priority messages to be transmitted. | Met | | 514 | 5.2.2.3.3b.4(2) | This type of RCCOW shall be as illustrated in figures 20-1, 20-3, 20-4, 20-6, and 20-14 [of the MIL-STD]. | Met | | 515 | 5.2.2.3.3b.4(3) | This type of RCCOW shall have the lowest priority to be transmitted. | Met | | 516 | 5.2.2.3.3b.4(4) | It shall be pre-empted by all RCCOWS, except for another RCCOW without a precedence. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---------------------------|---|--------------------------| | 517 | 5.2.2.3.3b.4(5) | The RCCOW shall be transmitted in the first frame that has not been accessed by a higher priority RCCOW. | Met | | 518 | 5.2.2.3.3b.4(6) | The RCCOW shall remain in queue for a random (less than 20) number of frames. | Met | | 519a | 5.2.2.3.3b.4(7) | If the terminal does not receive a CALL ACK, it shall transmit the RCCOW again, | Met | | 519b | 5.2.2.3.3b.4(8) | and shall retain the RCCOW in queue for a random (less than 20) number of frames. | Met | | 520 | 5.2.2.3.3b.4(9) | If the second transmission does not receive a CALL ACK, the RCCOW shall be cleared from the queue, requiring a re-entry for further transmission. | Met | | 521 | 5.2.2.3.3b.4(10) | If a CALL ACK is received any time during transmit processing, the RCCOW shall be cleared from the queue. | Not Applicable (Note) | | Note: This | requirement is not corre | ct in the MIL-STD. It is removed in MIL-STD-188-183A. | T | | 522 | 5.2.2.4 | If the terminal is required by its performance specification to have DC-mode channel controller capability, the terminal shall also be capable of accepting inputs to compose and transmit the CCOW messages described in 5.2.2.4.1 through 5.2.2.4.7.7. | Not Applicable
(Note) | | | ional requirement not imp | | 1 | | 523a | 5.2.2.4.1(1) | All terminals shall record in what frame they transmitted an RCCOW; | Met | | 523b | 5.2.2.4.1(2) | exactly three frames later, they shall decode the CALL ACK field to find out what type of CALL ACK they have received. | Met | | 524 | 5.2.2.4.1(3) | If the terminal does not receive a CALL ACK, it shall proceed in accordance with 5.2.2.3.3. | Met | | 525 | 5.2.2.4.1(4) | Terminal retransmission of RCCOWS shall occur if proper acknowledgement is not received. | Met | | 526 | 5.2.2.4.1(5) | Terminal interpretation of these calls shall be as follows: | Met | | 527 | 5.2.2.4.1a | No Acknowledgement (Code 000). No call was received. The terminal shall retransmit the RCCOW. | Met | | 528 | 5.2.2.4.1b | Positive RCCOW CALL ACK (Codes 001 to 111). The RCCOW has been received. User number in the CCOW is the user whose RCCOW was received. | Met | | 529 | 5.2.2.4.3 | All terminals with 16-bit addresses shall assume the MSB (bit 16) is a zero when receiving the Master Frame CCOW. | Met | | 530 | 5.2.2.4.7.1c(1) | If the frame format has not changed from the previous Master Frame, no terminal action shall be taken. | Met | | 531 | 5.2.2.4.7.1c(2) | If the frame
format has changed, the terminal shall check its slot connects and disconnect any that existed in the changed segment(s) of the frame format. | Met | | 532 | 5.2.2.4.7.1h(1) | If the DC Flag is reset, the system shall operate in the AC mode. | Met | | 533 | 5.2.2.4.7.1h(2) | If the DC Flag is set, the system shall operate in the DC mode. | Met | | 534 | 5.2.2.4.7.2a | The terminal shall compare the Called Party number with the user ID number assigned to each of its port numbers for a match. | Met | | 535 | 5.2.2.4.7.2.1(1) | After an information request has been received by the terminal, it shall send an information report before sending any other RCCOW. | Met | | 536 | 5.2.2.4.7.2.1(2) | No other RCCOW messages shall be sent before the Information Report. | Met | | 537 | 5.2.2.4.7.2.2(1) | This Information Request message shall be used by the terminal to automatically disconnect a port that has been illegally transmitting on a slot for greater than 17 minutes. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|--|---|--------------------------| | 538 | 5.2.2.4.7.2.2(2) | If there is a match between the terminal's port number and the user ID number in the Called Party field of the Information Request, and the code is 4, the terminal shall automatically disconnect its port from the slot. | Met | | 539 | 5.2.2.4.7.3 | When a terminal receives the Zeroize CCOW command, it shall zeroize the key storage memories of the KG and disconnect all slot connects. | Met | | 540 | 5.2.2.4.7.3a(1) | The terminal shall compare Called Party #1 field with Called Party #2 and with its terminal base address. | Met | | 541 | 5.2.2.4.7.3a(2) | If all three match, the command shall be executed by control signals that cause the KG to erase stored keys. | Met | | 542 | 5.2.2.4.7.3b | If it is not an exact copy of the Called Party #1 data field, the command shall not be executed. | Met | | 543 | 5.2.2.4.7.4a | The terminal action shall be either: a TS0 preparation, or Selection of new keys to prepare the KG. | Met | | 544 | 5.2.2.4.7.4b(1) | If the TS0 Flag is set, all terminals shall perform a TS0 at the frame count given in this CCOW. | Met | | 545 | 5.2.2.4.7.4b(2) | The result shall be that new variables are used to prepare the KG, and the frame count is reset to 24. | Met | | 546 | 5.2.2.4.7.4c(1) | If the Change KG Day Flag is set, all terminals shall change the KG day variable used to prepare the KG. | Met | | 547a | 5.2.2.4.7.4c(2) | The change shall occur at the frame count given in this CCOW, | Met | | 547b | 5.2.2.4.7.4c(3) | and the new KG day shall be the one given in this CCOW. | Met | | 548 | 5.2.2.4.7.4d(1) | If the Change Memory Flag is set, all terminal shall change the KG memory in use. | Met | | 549a | 5.2.2.4.7.4d(2) | The change shall occur at the frame count given in this CCOW and | Met | | 549b | 5.2.2.4.7.4d(3) | the new KG memory shall be that which is given in this CCOW. | Met | | 550 | 5.2.2.4.7.5a(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 551 | 5.2.2.4.7.5a(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 552 | 5.2.2.4.7.5b(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 553 | 5.2.2.4.7.5b(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 554 | 5.2.2.4.7.5c(1) | If the frame format has not changed in value, no terminal action shall be taken. | Not Applicable
(Note) | | 555 | 5.2.2.4.7.5c(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 556 | 5.2.2.4.7.6a(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 557 | 5.2.2.4.7.6a(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 558 | 5.2.2.4.7.6b(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | | lirected by the JCS, requeswitching and are no lon | irement 2 (for DC CCOWs, #1, #2, and #3), and requirements 550 through 579 are applicable ger required. | to DC mode | Enclosure 2-30 | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---|--|--------------------------| | 559 | 5.2.2.4.7.6b(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | ı | | 560 | 5.2.2.4.7.6c(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 561 | 5.2.2.4.7.6c(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 562 | 5.2.2.4.7.6d(1) | The Channel #4 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #4. | | | 563 | 5.2.2.4.7.6d(2) | It shall indicate the frequency code for channel #4. | | | 564 | 5.2.2.4.7.6e(1) | The Channel #5 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #5. | | | 565 | 5.2.2.4.7.6e(2) | It shall indicate the frequency code for channel #5. | | | 566 | 5.2.2.4.7.6f(1) | The Channel #6 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #6. | | | 567 | 5.2.2.4.7.6f(2) | It shall indicate the frequency code for channel #6. | | | 568 | 5.2.2.4.7.7a(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 569 | 5.2.2.4.7.7a(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | Not Applicable
(Note) | | 570 | 5.2.2.4.7.7b(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 571 | 5.2.2.4.7.7b(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 572 | 5.2.2.4.7.7c(1) | If the frame format has not changed in value, no terminal action shall be taken. | | | 573 | 5.2.2.4.7.7c(2) | If the frame format has changed, the terminal shall check its slot connects and shall disconnect any that existed in the changed segment(s) of the frame format. | | | 574 | 5.2.2.4.7.7d(1) | The Channel #7 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #7. | | | 575 | 5.2.2.4.7.7d(2) | It shall indicate the frequency code for channel #7. | | | 576 | 5.2.2.4.7.7e(1) | The Channel #8 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #8. | | | 577 | 5.2.2.4.7.7e(2) | It shall indicate the frequency code for channel #8. | | | 578 | 5.2.2.4.7.7f(1) | The Channel #9 Frequency Code/KG Net Number shall contain a 5-bit frequency code for channel #9. | | | 579 | 5.2.2.4.7.7f(2) | It shall indicate the frequency code for channel #9. | | | | directed by the JCS, requestiching and are no lon | | to DC mode | | 580 | 5.2.2.5(1) | If the terminal is required by its equipment performance specification to use RCCOW Data Transfer messages, it shall also receive RCCOW messages. | Met | | 581 | 5.2.2.5(2) | Data field definitions shall be the same as those given for the AC mode, with the exception of those fields labeled "AC Mode Only." | Met | | 582 | 5.2.2.5(3) | The AC mode fields shall be set to zeros for the DC mode. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|-----------------------------|---|------------------------| | 583 | 5.2.2.6 | The following factors shall affect the choice of transmit time for RCCOW messages: Transmit enable, and Random RCCOW access. | Not Testable
(Note) | | 584 | 5.2.2.6.1(1) | The terminal shall perform various checks to determine if RCCOW transmission is enabled. | | | 585 | 5.2.2.6.1(2) | If RCCOW transmission is enabled, the terminal shall progress into the random RCCOW access selection process. | | | 586 | 5.2.2.6.1(3) | The checks and the possible results are listed below in the order in which they shall occur: | | | Note: Ger | neral statements/definition | | T | | 587 | 5.2.2.6.1a(1) | When the terminal fails to receive a CCOW, RCCOW transmission shall be inhibited
in the next frame. | Met | | 588 | 5.2.2.6.1a(2) | RCCOW transmission shall also be inhibited if the terminal has not acquired range lock or if the terminal fails to properly decode a CCOW. | Met | | 589 | 5.2.2.6.1a.1(1) | When a terminal has acquired range and frame lock and has properly decoded CCOW, it shall be considered to be acquired. | Not Testable | | 590 | 5.2.2.6.1a.1(2) | The acquired mode of operation shall not preclude the missing of individual CCOWs. | (Note) | | Note: Ger | neral statements/definition | s. Not testable. | | | 591 | 5.2.2.6.1a.1(3) | If this occurs, RCCOW transmission shall be inhibited until another CCOW is properly received. | Met | | 592 | 5.2.2.6.1a.1(4) | At this time, the RCCOW transmission shall again be enabled. | Met | | 593 | 5.2.2.6.1a.2 | If every CCOW is missed for five minutes, the terminal shall reenter the acquisition process. | Met | | 594 | 5.2.2.6.1b(1) | RCCOW transmission shall be inhibited in any frame in which a terminal transmit inhibit condition occurs. | Met | | 595 | 5.2.2.6.1b(2) | The transmission inhibit condition shall be imposed by the terminal. | Met | | 596 | 5.2.2.6.2(1) | The terminal shall search its RCCOW queues to select an RCCOW for transmission. | Met | | 597 | 5.2.2.6.2(2) | Since neither the Data Transfer (figure 20-2 [of the MIL-STD]) RCCOW nor the Information Report (figure 20-6 [of the MIL-STD]) RCCOW has a higher priority of transmission than the other (except when the terminal is responding to an information request from the channel controller), whichever one appears in queue first shall be transmitted immediately. | Met | | 598 | 5.2.2.6.2(3) | The RCCOW shall remain in queue for a random (less than 20) number of frames after the first transmission. | Met | | 599 | 5.2.2.6.2(4) | If the terminal does not receive a CALL ACK, the RCCOW shall be transmitted again, still remaining in queue for a random (less than 20) number of frames. | Met | | 600 | 5.2.2.6.2(5) | If the second transmission does not receive a CALL ACK, the RCCOW shall be cleared from the queue, requiring a re-entry for further transmission. | Met | | 601 | 5.2.2.6.2(6) | If a CALL ACK is received any time during transmit processing, the RCCOW shall be cleared from the queue. | Not Applicable (Note) | | Note: This | requirement is not corre | ct in the MIL-STD. It is removed in MIL-STD-188-183A. | | | 602 | 5.3.1(1) | To fully operate within the waveform, the terminal shall be capable of processing plain text (PT) orderwire messages in both the AC and DC modes. | Met | | 603 | 5.3.1(2) | In PT or unencrypted orderwire operation, the terminal shall process CCOWs and RCCOWS as described in 5.3.1.1 to 5.3.1.5. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|---------------------------|--|----------------| | 604 | 5.3.1.1 | In plain text operation within the AC mode, the reception process shall be the same for both master frame CCOWs and all other CCOWs and shall be as follows: | Met | | 605 | 5.3.1.1d(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 606 | 5.3.1.1d(2) | Calculation of the CRC shall begin with byte 1 and end with byte 13. | Met | | 607 | 5.3.1.1d(3) | The generated 2 byte CRC shall be compared with byte 5 (high order CRC byte) and byte 6 (low order CRC byte) stored in step b, above. | Met | | 608 | 5.3.1.1e(1) | If the calculated CRC and the stored CRC match, reception of the CCOW shall be considered successful, and the CCOW messages data bytes shall be considered valid for further processing by the terminal. | Met | | 609 | 5.3.1.1e(2) | The terminal shall consider CCOW reception to be failed, and the CCOW message data bytes shall be discarded, if the calculated CRC does not match the stored CRC message parity bytes. | Met | | 610 | 5.3.1.2(1) | For reception of the Master Frame CCOW, the processes described in paragraph 5.3.1.1 shall be adhered to. | Met | | 611 | 5.3.1.2(2) | This process shall be supplemented by reading the KG ID field in bytes 12 and 13 and separately storing this number in terminal memory as the channel controller ID number. | Met | | 612 | 5.3.1.3 | In AC or DC modes, in plain text operation, the terminal shall prepare RCCOW messages before encoding, interleaving, and modulating, as follows: | Met | | 613 | 5.3.1.3b(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 614 | 5.3.1.3b(2) | Calculation of the CRC shall begin with byte 1 and end with byte 13. | Met | | 615 | 5.3.1.3b(3) | The generated 2 byte CRC shall be placed into RCCOW message bytes 12 (high order CRC byte) and 13 (low order CRC byte). | Met | | 616 | 5.3.1.4(1) | If a terminal is required by its performance specification to be DC mode channel controller, it shall prepare PT CCOW messages to be transmitted for Master Frame CCOWs and all other DC mode CCOWs. | Not Applicable | | 617 | 5.3.1.4(2) | The process shall be as follows: | (Note) | | 618 | 5.3.1.4d | The generated 2 byte CRC shall be placed into CCOW message bytes 5 (high order CRC byte) and 6 (low order CRC byte). | | | Note: Opt | ional requirements not in | inplemented in the terminal. | | | 619 | 5.3.1.5 | If the terminal is required by its performance specification to be a DC mode channel controller, or required to receive Data Transfer RCCOW messages, it shall process PT RCCOW messages as follows: | Met | | 620 | 5.3.1.5d | The generated 2 byte CRC shall be compared with byte 12 (high order CRC byte) and byte 13 (low order CRC byte), stored in step b, above. | Met | | 621 | 5.3.1.5e(1) | If the calculated CRC and the stored CRC match, reception of the RCCOW shall be considered successful, and the RCCOW messages data bytes shall be considered valid for further processing by the terminal. | Met | | 622 | 5.3.1.5e(2) | The terminal shall consider RCCOW reception to be failed, and the RCCOW message data bytes shall be discarded, if the calculated CRC does not match the stored CRC message parity bytes. | Met | | 623 | 5.3.2(1) | To fully operate within the waveform, the terminal shall be capable of processing encrypted orderwire messages in both the AC and DC modes. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|---|--------------------------| | 624 | 5.3.2(2) | Orderwire encryption/decryption shall be performed using the COMSEC/TRANSEC Integrated Circuit (CTIC) or an alternate NSA approved device that is cryptographically and functionally compatible with the CTIC implementing KGV-11 as specified in NSA specifications 88-4A and 87-1. | Met | | 625 | 5.3.2(3) | Hardware implementation of the terminal shall include provisions for future implementation of Over the Air Rekeying (OTAR) for the orderwire. | Not Tested
(Note) | | Note: OTA | | erwire (CCOW) messages have not been implemented in the Channel Controller Therefore, tes | ting could not be | | 626 | 5.3.2(4) | In encrypted or cipher text (CT) orderwire operation, the terminal shall process CCOWs and RCCOWS as described in 5.3.2.1 to 5.3.2.4. | Met | | 627 | 5.3.2.1.1 | The reception process for encrypted Master Frame CCOWs shall be as follows: | Met | | 628 | 5.3.2.1.1i(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 629 | 5.3.2.1.1i(2) | The generated 2 byte CRC shall be compared with byte 5 (high order CRC byte) and byte 6 (low order CRC byte), which are stored from g, above, in the decrypted CCOW message. | Met | | 630 | 5.3.2.1.1j(1) | If the calculated CRC and the stored CRC match, reception of the CCOW shall be considered successful, and the CCOW messages data bytes shall be considered valid for further processing by the terminal. | Met | | 631 | 5.3.2.1.1j(2) | The terminal shall consider CCOW reception to be failed, and the CCOW message data bytes shall be discarded, if the calculated CRC does not match the stored CRC message parity bytes. | Met | | 632 | 5.3.2.1.2 | The reception process for all encrypted CCOWs other than Master Frame CCOWs shall be as follows: | Met | | 633 | 5.3.2.1.2f(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 634 | 5.3.2.1.2f(2) | The generated 2 byte CRC shall be compared with byte 5 (high order CRC byte) and byte 6 (low order CRC byte), which are stored from g, above, in the decrypted CCOW message. | Met | | 635 | 5.3.2.1.2g(1) | If the calculated CRC and the stored CRC match, reception of the CCOW shall be considered successful, and the CCOW messages data bytes shall be considered valid for further processing by the terminal. | Met | | 636 | 5.3.2.1.2g(2) | The terminal shall consider CCOW reception to be failed, and the CCOW message data bytes shall be discarded, if the calculated CRC does not match the stored CRC message parity bytes. | Met | | 637 | 5.3.2.2 | In AC or DC mode, in encrypted operation, the terminal shall prepare RCCOW messages before encoding, interleaving, and modulating, as follows: | Met | | 638 | 5.3.2.2b(1) | The
CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 639 | 5.3.2.2b(2) | The generated 2 byte CRC shall be placed into RCCOW message bytes 12 (high order CRC byte) and 13 (low order CRC byte). | Met | | 640 | 5.3.2.2d | The serial data stream of these bytes presented to the KG for encryption shall begin with byte 3, MSB, and end with byte 13, LSB. | Met | | 641 | 5.3.2.3 | If the terminal is required by its performance specification to be a DC mode channel controller, it shall prepare encrypted CCOW messages to be transmitted for both Master Frame CCOWs and all other Nonmaster Frame DC mode CCOWs. | Not Applicable
(Note) | | JITC
REQ# | MIL-STD | REQUIREMENT DESCRIPTION | STATUS | |--------------|--------------------------------|--|------------------------| | 642 | Paragraph 5.3.2.3.1 | The sequence of events to encrypt CCOW Master Frame data shall be | | | 643 | 5.3.2.3.1b(1) | as follows: The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | | | 644 | 5.3.2.3.1b(2) | The generated 2 byte CRC shall be placed into CCOW message bytes 5 (high order CRC byte), and 6 (low order CRC byte). | Not Applicable | | 645 | 5.3.2.3.2 | The sequence of events used to encrypt CCOW Non-master Frame data shall be as follows: | (Note) | | 646 | 5.3.2.3.2b(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | | | 647 | 5.3.2.3.2b(2) | The generated 2 byte CRC shall be placed into CCOW message bytes 5 (high order CRC byte), and 6 (low order CRC byte). | | | Note: Opt | I
ional requirements not im | plemented in the terminal. | | | 648 | 5.3.2.4 | If the terminal is required by its performance specification to be a DC mode channel controller, or required to receive Data Transfer RCCOW messages it shall process encrypted RCCOW messages received as follows: | Met | | 649 | 5.3.2.4g(1) | The CRC generation method shall be the IBM BSC CRC 16 Protocol (see 5.2.1.3). | Met | | 650 | 5.3.2.4g(2) | The generated 2 byte CRC shall be compared with byte 12 (high order CRC byte) and byte 13 (low order CRC byte), which are stored from e, above. | Met | | 651 | 5.3.2.4h(1) | If the calculated CRC and the stored CRC match, reception of the RCCOW shall be considered successful, and the RCCOW messages data bytes shall be considered valid for further processing by the terminal. | Met | | 652 | 5.3.2.4h(2) | The terminal shall consider RCCOW reception to be failed, and the RCCOW message data bytes shall be discarded, if the calculated CRC does not match the stored CRC message parity bytes. | Met | | 653 | 5.4.1(1) | The FEC coding used shall be convolutional, with interleaving, to ensure errors are random. | Met | | 654 | 5.4.1(2) | The code rates used shall be 1) Rate one-half (R=1/2) or 2) Rate three-fourths (R=3/4). | Met | | 655 | 5.4.1(3) | The constraint lengths for these codes shall be k=7 and k=9 for the rate 1/2 and rate 3/4 codes respectively. | Met | | 656 | 5.4.1(4) | CCOW and RCCOW transmission shall use rate 1/2, k = 7 FEC coding. | Met | | 657 | 5.4.1(5) | Range and Link test transmissions shall not use FEC coding. | Not Testable
(Note) | | Note: Ger | neral statement/definition. | Not testable. | | | 658 | 5.4.1(6) | The code employed for user communications shall be determined by the transmission time slot, as defined in figures 3 through 5 [of the MIL-STD]. | Met | | 659 | 5.4.2(1) | The code tap positions shall be as follows: Rate = 1/2, k = 7 P1 1111001 P2 1011011 P3 001001011 P4 111110100 | Met | | 660 | 5.4.2(2) | The encoder tap connections shall be as shown in figure 9 [of the MIL-STD]. | Met | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|-----------------------------------|--|--------------------------| | 661 | 5.4.3(1) | The interleaver shall use a random interleaving method with a block depth of 224 symbols. | Met | | 662 | 5.4.3(2) | The block substructure shall consist of 2 independently constructed blocks of 112 symbols each, which are used in sequence. | Met | | 663 | 5.4.3(3) | A hybrid random scatter shall be incorporated in each block of 112 symbols. | Met | | 664 | 5.4.3(4) | The interleaver sequence shall be as shown in table XI (page 116 [of the MIL-STD]). | Met | | 665a | 5.5.1(1) | The modulation shall be interoperable with binary phase-shift keying (BPSK) and differentially encoded quadrature phase-shift keying (DEQPSK), | Met | | 665b | 5.5.1(2) | and shall have spectral containment equal to or better than BPSK and DEQPSK, respectively. | Met | | 666 | 5.5.2 | The terminal shall burst at 9,600 or 19,200 sps using BPSK modulation and 32,000 sps using DEQPSK modulation. | Met | | 667 | 5.5.4 | The data bit mapping in the modulation process of DEQPSK waveform shall be the following Gray code mapping convention: (see page 117). | Met | | 668 | 5.5.5.1 | The modulating signal timing jitter requirement shall be less than 2 percent of a data bit period, or 10 microseconds, whichever is less. | Met | | 669 | 5.5.5.2 | The maximum allowable error in the data rate shall be 1 part in 1000000 (1 part per million (ppm)). | Met | | 670 | 5.6.1 | The uplink frequency of any transmission, as received at the satellite, shall be within 240 Hz of the allocated uplink frequency, provided a and b (below) are both true: a. The CCOW transmission from the satellite is within 30 Hz of the allocated downlink frequency, and | Met | | 671 | 5.6.2(1) | b. The satellite inclination angle is equal to or less than 10 degrees.The terminal shall be capable of receiving downlink signals within 310 | Met | | 672 | 5.6.2(2) | Hz of the allocated center frequency. The frequency accuracy requirement shall include inaccuracies caused by Doppler and inaccuracies caused by frequency-standard, frequency measurement, and frequency-setting errors. | Not Testable | | 673 | 5.6.2(3) | Downlink frequency offset shall not exceed uplink frequency offset from the transponder center frequency plus the satellite transponder translation error. | (Note) | | Note: Ger | neral statements/definition 5.6.3 | The probability of a missed acquisition of any burst shall not degrade | Met | | 675 | 5.7.1 | the terminal's specified BER performance by more than a factor of two. Voice digitization and security shall be as follows: | Met | | 676 | 5.7.1(1) | For joint operations, secure voice at 2400 bps shall be interoperable with the digitization and encryption techniques used in the Advanced Narrowband Digital Voice Terminal (ANDVT), application 3 (see MIL-C-28883A). | Met | | 677 | 5.7.1(2) | Secure voice at 4800 bps shall be interoperable with the digitization techniques used in the Code Excited Linear Prediction (CELP) (FED STD 1016) and encryption techniques used by the KG-84A (NSA NO. 82-2B). | Not Applicable
(Note) | | JITC
REQ# | MIL-STD
Paragraph | REQUIREMENT DESCRIPTION | STATUS | |--------------|----------------------|---|--------| | 678 | 5.7.1(3) | Secure voice at 16000 bps shall be interoperable with the digitization techniques using Continuous Variable Slope Delta (CVSD) modulation and encryption techniques used by the VINSON (CSESD 14). | Met | | 679 | 5.7.2(1) | For joint operations, data encryption shall be interoperable with KYV-5 and KG-84A encryption devices. | Met | | 680 | 5.7.2(2) | Terminals that embed COMSEC devices shall support all data rates specified in the MIL STD for communications over the DAMA channel. | Met | (This page intentionally left blank.)